

22-Oct-97 Company Confidential 1

Embedded Development
Kit for the Microsoft®
.NET Micro Framework
Basic Step‐by‐Step Guide for .NET Micro
Framework Application Development on the
iPac‐9302

2010

By Sean Liming & John R. Malin
SJJ Embedded Micro Solutions, LLC

1/8/2010

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 2

Copyright © 2007-2010 SJJ Embedded Micro Solutions, LLC, All Rights Reserved

No part of this guide may be copied, duplicated, reprinted, and stored in a retrieval system by any
means, mechanical or electronic, without the written permission of the copyright owner.

First Release: September 2007
Second Release: January 2008
Third Release: June 2008
Fourth Release October 2008
Fifth Release January 2010

Published in the United States by

SJJ Embedded Micro Solutions, LLC.
6432 Glendale Dr.

Yorba Linda, CA 92886 USA

www.sjjmicro.com

Attempts have been made to properly reference all copyrighted, registered, and trademarked
material. All copyrighted, registered, and trademarked material remains the property of the
respective owners.

The publisher, author, and reviewers make no warranty for the correctness or for the use of this
information, and assume no liability for direct or indirect damages of any kind arising from the
information contained herewith, technical interpretation or technical explanations, for
typographical or printing errors, or for any subsequent changes in this article.

The publisher and author reserve the right to make changes in this publication without notice and
without incurring any liability.

Windows, .Net, and Visual Studio are registered trade mark of Microsoft Corporation.

All trademarks and copyrights are property of their respective owners.

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 3

Safety Information

Warning: To prevent fire or shock hazard, do not expose product to water, rain, or any type
of moisture.

Always follow basic safety precautions when using this product to reduce risk of injury from fire or
electrical shock

Warning Potential shock hazard

1. Read and understand all safety instructions.
2. Make sure power is disconnected before making any circuit connections.
3. Use a ground strap when work with hardware.
4. Place power cord so that no one can step or trip on it.
5. Do not use this product near water or an moisture source.

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 4

Table of Contents

1 WELCOME ... 8

1.1 EDK BACKGROUND ... 8
1.2 BASIC INTRODUCTION TO THE .NET MICRO FRAMEWORK .. 9

1.2.1 Intro to the CLR .. 9
1.2.2 .NET MF Architecture .. 10

1.3 REAL-TIME MULTITASKING KERNEL VS. CLR ... 13
1.4 ABOUT THIS GUIDE AND TARGET AUDIENCE .. 13
1.5 SYSTEM REQUIREMENTS FOR V4.0 .. 14

1.5.1 Basic system Requirements .. 14
1.5.2 USB Dongle Recommendations .. 14

1.6 WEBSITE ... 15

2 IPAC-9302 SETUP ... 16

2.1.1 iPac 9302 Features .. 17
2.1.2 Jumper Settings ... 18

2.2 EXERCISE 2.1: HARDWARE AND EDK SETUP .. 22
2.3 .NET MICRO FRAMEWORK V4 PORT TO THE IPAC-9302 .. 25

2.3.1 What does the .NET MF port support on the iPac-9302 .. 25
2.4 MFDEPLOY UTILITY AND SETTING STATIC TCP/IP .. 27

2.4.1 Command line options ... 27
2.4.2 Clearing the previous application ... 28
2.4.3 Clearing the Bootload Flag .. 35
2.4.4 Setting Static TCP/IP ... 36

2.5 SJJ_COMM LITE UTILITY ... 40
2.6 UPGRADING THE .NET MF ON THE IPAC-9302 .. 42
2.7 IMPORTANT NOTE FOR THOSE UPGRADING FROM V2.5 WITH ETHERNET 47
2.8 SUMMARY ... 48

3 THE .NET FRAMEWORK CONCEPT AND THE FIRST .NET MICRO FRAMEWORK
APPLICATION .. 49

3.1 OOP PUT INTO PRACTICE .. 49
3.2 C#, JITTING, AND GARBAGE COLLECTION ... 51
3.3 .NET MF SDK .. 51
3.4 EXERCISE 3.1: HELLO WORLD ... 52
3.5 DEBUG CLASS AND DOWNLOAD APPLICATIONS ... 58
3.6 DEPLOYMENT ISSUES .. 59
3.7 SUMMARY: OOP TO RUNNING ON THE HARDWARE .. 60

4 INNER PROCESS MECHANICS ... 61

4.1 THE INNER PROCESSING MECHANICS - THREADS, PRIORITIES, ROUND-ROBIN, AND
INTERRUPTS. .. 61

4.1.1 Creating Threads ... 62
4.2 EXERCISE 4.1: LOOKING AT PROCESSING MECHANICS IN ACTION .. 63
4.3 SUMMARY: ARCHITECT THE IMAGE! .. 66

5 GENERAL PURPOSE INPUT/OUTPUT PINS .. 67

5.1 IPAC-9302 GPIO .. 67
5.1.1 CPU GPIOs .. 67
5.1.2 CPLD GPIOs .. 68
5.1.3 iPac-9302 GPIO Summary Table .. 69

5.2 GPIO CLASSES, ENUMERATORS, AND THE SJJ HARDWARE PROVIDER 71
5.2.1 GPIO Pin Enumerations... 71

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 5

5.2.2 GPIO Port Classes ... 72
5.3 EXERCISE 5.1: TWIDDLE A BIT .. 73

5.3.1 Create and setup the project ... 73
5.3.2 Adding the code ... 75
5.3.3 Configure Project Properties; Build, and Deploy the application. 77

5.4 STATIC AND INSTANCE MEMBERS ... 77
5.5 EXERCISE 5.2: BASIC INPUT / OUTPUT .. 78

5.5.1 Create and setup the project ... 79
5.5.2 Adding the code ... 80
5.5.3 Configure Project Properties, Build, and Deploy the application. 82

5.6 EXERCISE 5.3: POLLING GPIO PINS ... 83
5.6.1 Create and setup the project ... 83
5.6.2 Adding the code ... 84
5.6.3 Configure Project Properties, Build, and Deploy the application. 85

5.7 EXERCISE 5.4: GPIO INTERRUPT ... 86
5.7.1 Create and setup the project ... 88
5.7.2 Adding the code ... 88
5.7.3 Configure Project Properties, Build, and Deploy the application. 91
5.7.4 Debugging the Interrupt ... 92

5.8 EXERCISE 5.5: INTERRUPTS AND ARCHITECTURE .. 92
5.9 EXERCISE 5.6: THE 555 TIMER PROJECT ... 93

5.9.1 Creating and Test the 555 Circuit .. 95
5.9.2 Modify the Exercise 5.4: GPIO Interrupt Application and Run the Application 96

5.10 SUMMARY: GPIO OVERLOAD ... 97

6 SERIAL PERIPHERAL INTERFACE (SPI) ... 98

6.1 SPI BASICS – NOT FOR BIT-BANG ANYMORE .. 98
6.2 SPI CLASSES .. 101
6.3 EXERCISE 6.1: BASIC SPI LCD PROJECT ... 102

6.3.1 SPI Controller Commands ... 102
6.3.2 Connecting the SPI LCD to the iPac-9302 .. 104
6.3.3 Creating a New Application Using the SJJ_MF Console Application Template 105
6.3.4 Adding the Code to send data to the SPI LCD .. 106
6.3.5 Configure Project Properties, Build, and Deploy the application. 109

6.4 EXERCISE 6.2: MANAGED CODE DRIVER LIBRARY - SERIAL LCD DISPLAY 109
6.4.1 Create the SPI_LCD Driver Library ... 109
6.4.2 Adding the code to the library .. 110
6.4.3 Create a Test Application .. 115

6.5 EXERCISE 6.3: SPI READ - SPI KEYPAD INPUT ... 116
6.5.1 Hardware setup .. 117
6.5.2 Creating the SPI Keypad application ... 117
6.5.3 Build, Deploy, and Test .. 120

6.6 THE SPI SUMMARY ... 120

7 SERIAL PORTS – COM2 (RS-232/422/485) ... 121

7.1 RS-232, RS-422, AND RS-485 OVERVIEW .. 121
7.1.1 RS-232 ... 121
7.1.2 RS-422 ... 121
7.1.3 RS-485 ... 121

7.2 IPAC-9302 COM2 PORT HARDWARE ... 122
7.3 SERIALPORT CLASSES .. 122
7.4 EXERCISE 7.1: BASIC RS-232 COMMUNICATION APPLICATION .. 123

7.4.1 Create the Serial_Test Application .. 124
7.4.2 Add the code to Create an instance of the serial port and Echo Characters 124
7.4.3 Configure Project Properties, Build, and Deploy the application 125

7.5 SUMMARY: SERIAL PORTS AND MORE SERIAL PORTS ... 127

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 6

8 PULSE WIDTH MODULATION (PWM) ... 128

8.1 PULSE-WIDTH MODULATION OVERVIEW ... 128
8.1.1 Internal SOC PWM Controller .. 129
8.1.2 CPLD PWM Controllers ... 129

8.2 PWM PROGRAMMATIC ACCESS ... 130
8.2.1 PWM Managed Code Driver API ... 130

8.3 EXERCISE 8.1: BASIC PWM CONTROL APPLICATION ... 132
8.3.1 Create the PWM_Test Application ... 132
8.3.2 Add the code to create the PWM driver object and green LED GPIO object 133
8.3.3 Configure Project Properties, Build, and Deploy the application 135
8.3.4 Running PWM_Test ... 136

8.4 SUMMARY: PULSE WIDTH MODULATION (PWM) .. 137

9 ANALOG-TO-DIGITAL CONVERTER (ADC) ... 138

9.1 ANALOG-TO-DIGITAL CONVERTER OVERVIEW ... 139
9.2 ADC PROGRAMMATIC ACCESS .. 140

9.2.1 ADC Managed Code Driver API .. 140
9.3 EXERCISE 9.1: BASIC ADC CONTROL APPLICATION .. 142

9.3.1 Create the ADC_Test Application .. 142
9.3.2 Add the code to create the ADC driver object and the green LED GPIO object. .. 142
9.3.3 Configure Project Properties, Build, and Deploy the application 145
9.3.4 Running ADC_Test .. 145

9.4 SUMMARY: ANALOG-TO-DIGITAL CONVERTER (ADC) .. 146

10 ETHERNET... 148

10.1 SOCKETS .. 148
10.1.1 Socket Setup .. 150

10.2 EXERCISE 10.1 SERVER ACCESS – LOOPBACK ... 150
10.2.1 The Desktop Client Application .. 150
10.2.2 Socket Server Application .. 152
10.2.3 Create the Socket Server Application .. 152
10.2.4 Adding the Socket Server Code .. 154
10.2.5 Configure Project Properties, Build, and Deploy the application 162
10.2.6 Running MF_SocketServer .. 162

10.3 SUMMARY: ETHERNET, TCP/IP, AND SOCKETS ... 172

11 OTHER TOPICS AND IDEAS .. 173

11.1 EXERCISE 11.1: GPIO BLOCK ACCESS LIBRARY ... 173
11.2 SOME PROGRAMMING TIPS .. 176

11.2.1 Application End Loop ... 176
11.2.2 To Debug.Print or Not to Debug.Print; That is the Question 177
11.2.3 Interrupt Service Routine Mistakes .. 177
11.2.4 Clean Instantiation ... 178

11.3 SUMMARY - REUSABLE CODE DELIVERED ... 178

A C# PRIMER .. 179

A.1 C# OPERATORS .. 179
A.2 VALUE TYPES .. 180
A.3 LOOPS .. 180

A.3.1 Do - While .. 180
A.3.2 While .. 180
A.3.3 For .. 181
A.3.4 Foreach, in ... 181

A.4 PROGRAM FLOW / CONDITIONAL BRANCHING .. 181
A.4.1 If-else ... 181
A.4.2 Switch-Case ... 182

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 7

A.4.3 Goto ... 183
A.4.4 Return .. 184

A.5 ARRAYS .. 184

B VIRTUAL COM PORTS ... 186

B.1 SJJ_PWM_DRIVER DETAILS ... 186
B.2 SJJ_ADC_DRIVER DETAILS .. 188

C PARTS LIST, SUPPLIERS, ETC. .. 191

C.1 PARTS LIST ... 191
C.2 SUPPLIERS .. 191
C.3 SCHEMATIC CAPTURE .. 191
C.4 INTERNET RESOURCES .. 192

D IPAC-9302 I/O HEADER INFORMATION ... 193

D.1 HEADER 1 – HDR1 ... 193
D.2 HEADER 2 – HDR2 ... 193
D.3 HEADER 3 – HDR3 ... 194

E EXTENDED WEAK REFERENCES .. 196

E.1 MEMORY MANAGEMENT (GARBAGE COLLECTION) AND WEAK REFERENCES 196
E.2 DATA STORAGE WITH EXTENDED WEAK REFERENCES .. 198
E.3 EWR CLASS ... 198
E.4 A SIMPLE EWR EXAMPLE .. 199

E.4.1 Create the Storage Application .. 199
E.4.2 Build, Deploy, and Test .. 202

F BIBLIOGRAPHY .. 203

F.1 BOOKS: ... 203
F.2 CONFERENCES .. 203
F.3 WEBSITES ... 203

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 8

1 Welcome
Welcome to the Microsoft® .NET Micro Framework, one of the most exciting embedded
technologies in some time. The .NET Micro Framework or .NET MF lets developers focus on the
application part of an embedded system while removing the tedious task of developing low level
device drivers. Using the familiar Microsoft® Visual Studio development suite, anyone from
engineers and software developers to students can write applications that directly control
hardware devices.

The .NET Micro Framework consists of the .NET Framework Common Language Runtime (CLR)
sitting on top of a hardware abstraction layer (HAL) that allows developers to write managed code
applications in Visual Studio for small footprint devices. Using only a few hundred kilobytes of
RAM and an inexpensive processor, the Microsoft .NET Micro Framework platform gives you the
means to build applications by using the same development tools and advanced languages, such
as C#, that you use to build desktop applications.

The Embedded Development Kit for .NET Micro Framework (EDK) provides the foundation for
writing C# applications for the .NET MF. This guide provides the background and basic step-by-
step instruction to get started.

1.1 EDK Background
Reusable code is one of the Holy Grails for software developers. In this effort, abstracting the
hardware from the OS details and focusing on the application became an integral part of this
quest. In the late 1970’s, Object Oriented Programming (OOP) was a means to address this
concept, and the evolution of different solutions from MFC, Java, and now .NET were a means for
practical implementation. For application development, these solutions have worked well, and
progress is being made in new programming concepts and development tools.

Because of the abstraction from the hardware, the idea of reusable code breaks down when it
comes to interfacing to the hardware. Embedded developers are used to writing code that
interacts directly with the hardware. Every embedded controller manufacturer implements their
internal chip architecture differently. Even if the CPU core is the same, the surrounding busses,
interrupt controllers, memory interfaces, and IO are all different. Writing software for one CPU
family and trying to run it to a different CPU family will not work. Code has to be re-written natively
and tested.

The hardware abstraction layer (HAL) was developed to help operating systems separate the
kernel from the hardware, thus making the kernel portable from platform to platform. Windows
NT, 2000, XP, and Vista all make us of the HAL. Writing the HAL / device drivers take time and
experience.

Developing an embedded device from the ground up has always been a challenging task and not
for the faint of heart. As you would expect, board bring-up is the critical path for any project. .NET
MF integrated to a standard hardware platform provides a different approach. The code to
interact with the hardware is already complete; all you have to do is write the managed
application. The EDK has been design to help eliminate this critical path so you can concentrate
on your application.

The EDK features EMAC’s iPac-9302 Single Board Computer (SBC) with the .NET Micro
Framework already on board. The iPac-9302 features an ARM9 processor with a variety of IO to
meet the needs of any application. The EDK is a multi-use solution that can be used to develop a
variety of embedded applications such as robotics, shipment tracking, industrial controls, security
systems, Point of Service applications, and much more. The iPac-9302 is a production-quality

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 9

board that can be embedded, as-is, into a final product; or it can be used as a reference design
for a custom end product.

1.2 Basic introduction to the .NET Micro Framework
Windows XP and Windows 7 support the full .NET Framework. Windows CE supports .NET
Compact Framework which is a subset of the full .NET Framework.

OS Framework
Windows XP / XP Embedded / Vista .NET Framework 1.1, 2.0, 3.0, 3.5
Windows CE .NET Compact Framework
.NET Framework CLR + HAL .NET Micro Framework

Table 1.1 - OS and .NET Support

.NET Micro Framework is an even smaller subset, and only contains support for what is relevant
for small footprint devices. Designed from the ground up, .NET MF will run battery powered
devices with lower-end 32-bit processors with minimal flash and RAM. The SPOT watch and the
Windows Vista SideShow display are examples of earlier implementations of the technology.
Beyond these applications, .NET MF serves as an ideal platform for deeply embedded
applications where Microsoft’s other embedded offerings, Windows CE and Windows XP
Embedded, are too large to fit.

.NET MF can be ported to different ARM-based processors, which has already been completed
for the iPac-9302 / EDK. The cost of many embedded projects goes up because integrating the
software to the hardware can be complex. The advantage of the EDK is that the .NET MF has
already been ported to the iPac-9302 hardware and is ready to run applications developed in
Visual Studio. The EDK is a generic development platform that allows you to download different
applications to control different devices.

1.2.1 Intro to the CLR

As stated earlier, the .NET MF consists of a CLR. CLR means Common Language Runtime. The
CLR is an agent that manages code at execution time, providing core services such as memory
management, thread management, exception handling and debug services, while also enforcing
strict type safety and other forms of code accuracy that promote application security and
robustness. In fact, the concept of code management is a fundamental principle of the CLR. Code
that targets the CLR is referred to as managed code, whereas code that does not target the CLR
is known as unmanaged code.

Programmers writing in VB.NET, Visual C++ /CLR, or C# compile their programs into an
intermediate form of byte code called Common Intermediate Language (CIL) in a portable
execution (PE) file. In the case of .NET Framework, the code is compiled in Microsoft
Intermediate language, which is Microsoft’s implementation of the CIL. We will talk about what
gets executed by the CLR a little later.

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 10

Fig 1.1 - Languages and the Bytecode

The CLR is a special implementation of the full CLR used in .NET Framework. For .NET MF, the
CLR sits on top of a HAL layer, which makes it possible to port .NET MF to other processors.
Think of .NET MF as a CLR (managed code) kernel, and not a full blown operating system. It is
very important to know that .NET MF is not a real-time kernel. There are no deterministic
responses that can be made from the CLR.

If you are familiar with C#, you will see much of the same coding techniques. If you are new to C#
programming, the EDK provides a fun way to learn while implementing applications on real
hardware other than a PC. A C# primer is supplied in the appendix.

1.2.2 .NET MF Architecture

.NET MF consists of 4 layers: Application, Class Library, Runtime Component, and Hardware.

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 11

Fig 1.2 - 4 Layers of .NET MF

Application Layer – The top layer simply consists of the managed applications you write in
Visual Studio. These applications are specific to the hardware that you are writing them too. Even
though Visual Studio and .NET supports different languages, C# is the only language currently
available to write .NET MF managed code applications

Class Library Layer – Earlier, we talked about reusable code. The class libraries are the
reusable objects that you can use to write applications. The different objects that are support are

• Extended Chipset to access specific peripherals such as GPIO, serial, SPI, I2C, etc
• The CLR API class library and the CLR corelib
• Encryption
• Debug, graphics, and shell DLLs

CLR – This layer consists of three components: the .NET Micro Framework common language
runtime (CLR), a hardware abstraction layer (HAL), and a platform abstraction layer (PAL).

As we described earlier, the CLR is a subset of the .NET Framework CLR, which is the run-time
environment provided by the .NET Framework.

Features of the .NET Micro Framework CLR include:

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 12

• Numeric types, class types, value types, arrays (one-dimensional only), delegates,
events, references, and weak references

• Synchronization, threads, and timers
• Reflection
• Serialization
• Garbage collection
• Exception handling
• Time classes, including DateTime and TimeSpan (using INT64 arithmetic)
• Time-sliced thread management
• Exceptions to and extensions of the CLR include:

o Execution constraints that limit call durations and prevent failures.
o Strings represented internally as UTF-8 and exposed as Unicode.
o A global, shared string table for well-known values (types, methods, and fields)

that reduces RAM and ROM and reduces the number of cross-references among
assemblies.

o A WeakDelegate class to handle dangling references to delegates.
o Support for extending the hardware peripherals such as GPIO, serial, SPI, or I2C

so that you can access them in C#.

Note: The release CLR code is controlled by Microsoft, but starting with V4.0, the release is an
Open Source release. The CLR code can now be customized and enhanced by anyone
producing a CLR port. If these enhancements are submitted back to the Microsoft .NET MF
Team and approved, they will be included in future Porting Kit releases and supported by the
Microsoft .NET MF Team and the Open Source Porting Community. If the customizations and
enhancements are kept proprietary, then support must be provided by the team or company that
produced the custom port. The EDK contains HAL driver customizations and extensions for the
iPac-9302 hardware. It does not contain any customizations or enhancements to the CLR/PAL
code.

Features not supported:

• Multidimensional arrays.
• Virtual tables for method resolution, which saves RAM.
• Preemptive call backs.

The HAL and the PAL control the underlying system hardware. Both the HAL and the PAL are
groups of C++ and assembly functions called by the CLR. The HAL is what gets modified to
support different processors and peripheral hardware. It contains some boot strap code, as well
as, the drivers that make up the system.

Although the CLR HAL code is configured to boot directly, the EDK has an independent boot
loader known as TinyBooter that boots the hardware and loads the CLR into memory. The
Tinybooter is used to update the CLR code.

Hardware Layer - The hardware layer contains the microprocessor and other circuitry, and for
the EDK this would be the iPac-9302.

Besides the iPac-9302, the .NET Micro Framework SDK includes support for an emulator that
runs in Windows. You can develop, test, and debug applications before testing on actual
hardware. The emulator is typically used when the target hardware is in design and development
and not available, thus giving the software developers an opportunity to start managed code
application development in advance of the hardware. Since you have a fully functional hardware
platform, application development and debug can be done directly on the iPac-9302.

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 13

1.3 Real-time multitasking Kernel vs. CLR
If .NET MF was a real-time embedded kernel like a uCOS or a ThreadX, typically at this point we
would introduce future topics for discussion such as priority levels, process spaces, memory
management, etc. Threads and priority levels are supported, but not to the extended of other
Real-time kernels. Knowing what the CLR is capable of and not capable of will help guide
application development. We discuss these details a little later.

In the embedded market, there is a spectrum of operating systems and kernels available for
embedded development. Many people may try to classify .NET MF at the end of the kernel
spectrum, but .NET MF is NOT real-time and not really a kernel. A better description for .NET MF
is an execution engine. It is important to think of .NET MF as an embedded CLR or managed
code engine. Even though .NET MF doesn’t feature real-time deterministic capability, its
performance is fast enough for many small embedded systems. Chapter 4 will discuss the inner-
processing mechanics.

1.4 About this Guide and Target Audience
The EDK is intended to reach a wide audience from students to hobbyists to professional
developers. The examples provide a basic foundation for writing applications for .NET MF.

For those who have used a previous version of the guide, you will notice some changes in this
revision. First, this revision supports .NET Micro Framework V4.0. There are some API changes
to the serial port and Ethernet have been added. Second, we have removed the emulation
chapter since having the real hardware is better than emulation. Third, we have moved
information about the iPac-9302 to its own chapter. Forth, Extended Weak References has been
moved to the appendix. Fifth, the chapters have been reordered slightly to improve information
flow from application mechanics to hardware control. Finally, we have updated the various
examples for .NET MF V4.0.

As before, this document covers the basic information regarding the CLR, C#, and .NET. There
are other books available that dive deeper into these subjects. Even though these books cover
coding on the desktop, the basic concepts are all the same. In some cases you can take the
examples and run them in .NET MF.

This chapter serves as an introduction to the .NET MF and EDK. More complete .NET MF can be
found in the online help documentation of the .NET MF SDK. The following chapters dive into
different features of what can be done in the EDK.

• Chapter 2 covers the iPac-9302 features and setup. It also introduces some of the utilities
for use with .NET MF and for upgrading firmware on the platform.

• Chapter 3 covers an overview of the .NET Micro Framework SDK and discusses how to

write and download applications to the iPac-9302.

• Chapter 4 discusses the application/CLR processing loop and thread priorities available
in .NET MF. A flash data storage technique is also discussed.

• Chapter 5 looks at the GPIO class and the GPIOs available on the iPac-9302. There are

several exercises that address input, output, polling, and interrupts.

• Chapter 6 introduces the SPI class and how to interface to the SPI port. The exercises
show how to connect to a 2x16 SPI LCD display and 4x4 keypad.

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 14

• Chapter 7 covers the second serial port that is part of the EDKPlus.

• Chapter 8 discusses the different PWMs supported on the iPac-9302 and the managed
code driver that provides control of the PWMs.

• Chapter 9 covers the ADC and the managed code driver that provides read accesses to

the data from the 5 ADC channels.

• Chapter 10 discusses Ethernet and creating applications with the socket class.

• Chapter 11 covers other miscellaneous topics and ideas to help with your coding.

If you are already familiar with .NET MF, then you can skip to different chapters, but the guide
has been designed to be read from beginning to end. Each chapter builds upon the preceding
chapters.

1.5 System Requirements for V4.0
.NET Micro Framework V4.0 now provides support for the Visual C# Express 2008.

1.5.1 Basic system Requirements
The basic requirements for the development machine are as follows:

• Intel Pentium 4 or higher
• 512MB of RAM, the more RAM the better.
• Windows XP Pro SP2 or higher
• Visual Studio 2008 with SP1 or higher, or Visual C# Express 2008 (Free Download)
• RS-232 Serial support used for downloading and debugging applications.
• .NET Micro Framework V4.0 SDK – free download from Microsoft.

Some of the exercises will require hardware that is not included in the kit. Appendix C has a list of
these items.

1.5.2 USB Dongle Recommendations
Application development is performed over serial ports. Support for the RS-232 port is a rarity in
modern PCs; especially laptops. There are USB-to-Serial dongles available, but not all are
created equal. We recommend that you find a dongle that supports the Prolific USB-to-RS-232 IC
chip (PL-2303 or better, http://www.prolific.com.tw). Here are some vendors that support this IC
chip:

• http://usbgear.com/USBG-RS232-P72.html

• http://usbgear.com/765162.html

• http://www.sealevel.com/product_detail.asp?product_id=1631&Ruggedized%5FUSB%5F
to%5FRS%2D232%5FDB9%5FSerial%5FInterface%5FAdapter%5F

• http://www.beaglesoft.com/232usb.htm

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 15

1.6 Website

Every effort has been made to assure the accuracy of this development guide, but mistakes can
fall through the cracks and Internet addresses can change. Please check the SJJ website for
updates (www.sjjmicro.com), and please post a question to our contact / feedback form if you
have any questions, suggestions, or require consulting services for your project.

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 16

2 iPac-9302 Setup

The iPac-9302 was specially designed for the .NET MF by EMAC, INC – www.emacinc.com.
There are plenty of I/O options to build a variety of applications. The board itself meets the
PC/104 dimensions so you can take advantage of PC/104 power supplies and enclosures.

A majority of the port signals are on 3 header blocks, while serial connections have their own
separate 10 pin headers. There are two LEDs on board. The Red LED is a boot indicator not
available for program control. The Green is available for program control through the GPIO
interface. There is more than enough RAM and FLASH (8MB/8MB) for application and data
storage.

EMAC has created an updated revision to the iPac-9302 that adds a new jumper - JB5 – for use
with HDR1. This change was made to RV2 boards. Check the silk screen on the board to make
sure that you know the correct revision of board that you have. We will show the difference
between the boards in this chapter. Please see the iPac-9302 User’s Guide for more information.

This chapter will cover the setup of the iPac-9302, some of the utilities that will be used, and
supported changes for .NET MF V4.0. Please read this chapter carefully as there are
changes to both hardware and software development.

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 17

Fig 2.1 - iPac-9302 RV1

2.1.1 iPac 9302 Features
The following are the features of the iPac-9302:

• PC/104 Dimensions of 96 mm x 90 mm (3.77" x 3.54")
• 1 RS232 (HDR6), a second RS232/422/485 serial port (HDR5) is available on boards

that come in the EDKplus.
• 1 10/100 Base-T Ethernet port
• 2 USB 2.0 host ports (not support by .NET MF)
• 5 channels of 12 bit A/D (0 to 3.3V)
• Internal Real time clock/calendar (no battery backup)
• A 50 pin header with 16 processor GPIO lines and 8 PLD output GPIO lines.
• A 50 pin header with 8 PLD 5 volt tolerant GPIO lines, 8 PLD output GPIO lines, and 8

PLD High Drive output GPIO lines.
• 2 PWM I/O lines from the CPLD and 1 PWM from the processor.
• SPI / AC97 / I2S options - .NET MF uses SPI only.

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 18

• External Reset Button provision and red & green Status LEDs
• 8 MB of External Flash
• 8 MB External SDRAM
• Battery backed RTC
• MMC/SD hot-swap socket*

2.1.2 Jumper Settings
There are 4 major jumper settings on the iPac-9302 RV0 and RV1, and 5 jumpers on the RV2
boards.

Fig 2.2 - Jumper Locations for RV1

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 19

Fig 2.3 - Jumpers Locations for RV2

2.1.2.1 JB1 – HDR1 Pin 49 Voltage Selection and High Drive Pull-up Selection jumper for RV1

boards

The following diagram and table show the information:

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 20

Fig 2.4 - Jumper Block JB1 for RV1 Boards

Jumper Configuration
1 2 Vin (HDR4, pin4) applied to HDR1 pin 49, no pull-up voltage (open).
1 3 Vin (HDR4, pin4) applied to pull-ups, no connection to pin 49.
2 4 User provided voltage on HDR1 pin 49 applied to pull-ups.
3 5 +5 volts applied to pull-ups, no connection to HDR1 pin 49
4 6 +3.3 volts applied to pull-ups, no connection to HDR1 pin 49.

Table 2.1 - JB1 Jumpers for RV1

WARNING - Do not connect pins 5 & 6 or you will short out the supply and void the warranty of
the board.

2.1.2.2 RV2 JB5 and JB1 Jumper Options
There are a few changes made in iPac-9302 RV2. First, the pull up resistors are at a higher
resistance value (51k ohms). Second, the addition of JB5 helps to avert connecting the wrong
voltage and shorting the board.

iP
ac

-9
30

2
H

D
R

1

PY7

PY6

PY5

PY4

PY3

PY2

PY1

PY0

PZ7

PZ6

PZ5

PZ4

PZ3

PZ2

PZ1

PZ0

VCC

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

/PX7

/PX6

/PX5

/PX4

/PX3

/PX2

/PX1

/PX0

1

3

5

7

9

11

13

15

33

35

37

39

41

43

45

47

49

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

17

19

21

23

25

27

29

31

HDR1

OUT1

OUT2

OUT3

OUT4
OUT5

OUT6

OUT7

OUT8

IN1

IN2

IN3

IN4

IN5

IN6

IN7

IN8

CATHGND

18

17

16

15
14

13

12

11

1

2

3

4

5

6

7

8

109

ULN2803LW

U11

1 2 3 4

8 7 6 5

10
K

 x
 4

Z1

1 2 3 4

8 7 6 5

10
K

 x
 4

Z2

+Vin

5V_VCC 3.3_VCC

CPLD_PX7
CPLD_PX6
CPLD_PX5
CPLD_PX4
CPLD_PX3
CPLD_PX2
CPLD_PX1
CPLD_PX0

1
3
5

2
4
6

JB1

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 21

Fig 2.5 - Jumper Block JB1 and JB5 for RV2 Boards

Table 2.2 – shows that JB1 has split the jumper/voltage selection for HDR1 Pin 49 and the pull up
resistors.

Jumper Configuration
1 3 3.3V on Pin 49 VCC on HDR1
3 5 Voltage on HDR1 Pin 49 VCC is determined from JB5
2 4 3.3V applied for pull up resistors
4 6 Pull up resistor voltage determined from JB5

Table 2.2 - JB1 Jumper settings for RV2

Jumper Configuration
1 2 Vin is selected
2 3 5V is selected

Table 2.3 - JB5 Jumper Selections

Basic examples of the JB1 and JB5 selections:

• If JB1 has a jumper on pins 1 and 3, 3.3V will be available on HDR1 Pin 49.

1 2 3 4

8 7 6 5

51
K

 x
 4

Z1

1 2 3 4

8 7 6 5

51
K

 x
 4

Z2

+Vin

5V_VCC

3.3_VCC

CPLD_PX7
CPLD_PX6
CPLD_PX5
CPLD_PX4
CPLD_PX3
CPLD_PX2
CPLD_PX1
CPLD_PX0 iP

ac
-9

30
2

H
D

R
1

PY7

PY6

PY5

PY4

PY3

PY2

PY1

PY0

PZ7

PZ6

PZ5

PZ4

PZ3

PZ2

PZ1

PZ0

VCC

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

/PX7

/PX6

/PX5

/PX4

/PX3

/PX2

/PX1

/PX0

1

3

5

7

9

11

13

15

33

35

37

39

41

43

45

47

49

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

17

19

21

23

25

27

29

31

HDR1

OUT1

OUT2

OUT3

OUT4
OUT5

OUT6

OUT7

OUT8

IN1

IN2

IN3

IN4

IN5

IN6

IN7

IN8

CATHGND

18

17

16

15
14

13

12

11

1

2

3

4

5

6

7

8

109

U1

ULN2803LW

1

3
2

JB5

1
3
5

2
4
6

JB1

3.3_VCC

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 22

• If JB1 has jumper on pines 3 and 5, and JB5 has a jumper on 2 and 3, 5V will be
available on HDR1 Pin 49.

2.1.2.3 JB2 – UART1 (HDR5) Serial Selection Jumper (Optional on some boards)

Jumper Setting
1 2 RS-232 Serial
3 4 RS422 Full Duplex (transmitter always on)
5 6 RS485

Table 2.4 - JB2 Jumpers

2.1.2.4 JB3 – I/O header (HDR3, pin49) Voltage Selection Jumper

JB3 sets the voltage for the pin to 3.3V or 5V for use with external devices.

Jumper Voltage
1 2 +3.3V
2 3 +5V

Table 2.5 - JB3 Jumpers

2.1.2.5 JB4 Boot option Jumper

Jumper Configuration
1 2 Serial Boot through UART 1 (See section 2.8

on the Cirrus boot utility)
2 3 Normal Boot from Flash.

Table 2.6 - JB4 Boot option Jumpers

2.2 Exercise 2.1: Hardware and EDK Setup
Since you are probably eager to power up your new hardware and download an application, let’s
setup the hardware for use with the various exercises that we will be performing in this guide.

1. Get the standoffs out of their package.
2. Remove the iPac-9302 from its static bag. Be careful not to get the board near any static

source that could damage the board (using a properly grounded, conductive wrist-strap is
a good antistatic practice when handling circuit boards and electronic components).

3. Screw on 1 standoff to each of the 4 corner holes.

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 23

Fig 2.6 - iPac-9302 with Standoffs

4. Set the jumpers to the following configuration:

Jumper Setting
JB1 For RV1: Pins 1 & 2 (Vin HDR1, pin49)

For RV2: Pins 3 and 5 (voltage for HDR1 pin 49 is
selectable by JB5)

JB2 (optional) Pins 1 & 2 RS-232 (not supported in the EDK version)
JB3 Pins 2 & 3 (+5V HDR3, pin 49)
JB4 Pins 2 & 3 (Normal boot)
JB5 (RV2 only) Pins 2 and 3 (5V)

Table 2.7 - iPac-9302 .NET MF Jumper Configuration

5. Connect the serial ribbon cable to header 6 (HDR6). Be sure to align the color stripe to

pin 1 on HDR6 and make sure that all pins on the header align with the cable connector.

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 24

Fig 2.7 - iPac-9302 with COM1 Serial Cable Attached

6. Connect one end of the Null modem cable to the DB-9 of the ribbon cable and the other

end to the PC serial port.
7. Connect an Ethernet cable to the Ethernet port if you plan to use DHCP. Otherwise, use

MFDeploy to set a static TCP/IP address when the Ethernet cable is not connected.
8. (Optional): if you have a fully populated iPac-9302, you may want to connect another

ribbon cable to the COM2 port 10-pin header 5 (HDR5), again making sure that the color
stripe on the cable aligns with pin 1 and that all pins of the header align with the cable
connector.

9. Make sure that you have installed Visual Studio or Visual C# express and that you have
installed .NET Micro Framework V4.0 SDK. Insert the EDK CD in to your development
PC.

10. You will be asked to run the batch file that launches the installation webpage, click OK or
select the autorun to continue.

11. The setup page launches the browser. The menu on the left lists the different
documentations and tools for use with the EDK. All the documents require Adobe®
Reader®. If you are reading this document, then you already have the reader installed.
You can save one copy of the Step-By-Step Guide to your hard drive.

Menu Item Description
Step-By-Step Dev. Guide This guide which provides detailed information on the

.NET Micro Framework running on the iPac-9302
iPac-9302 Documentation Important information regarding the iPac-9302

hardware. You should read this documentation before
connecting anything to the iPac-9302

Chapter Exercise ZIP file that contains the solutions and tools needed for
the different exercises in the development guide.

Utilities Contains an installer for the SJJ_COMM Lite serial
communications application. Click on this menu and run
the setup to install SJJ_COMM Lite

EULA and Warranty Legal documents pertaining to the use of the EDK
www.sjjmicro.com Link to SJJ Embedded Micro Solutions Website

Table 2.8 - EDK CD Contents

12. Click on the Chapter Exercises and save the ZIP file to your local hard drive.

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 25

13. Extract the ZIP file to decompress the chapter solutions, SJJ Hardware provider DLL, and
Visual Studio template.

14. Optional - Click on the Utilities menu item to install SJJ_COMM Lite.

Note: Some of the exercises in this guide will require extra hardware that is not part of the kit.
Appendix C contains the list of these hardware items.

2.3 .NET Micro Framework v4 Port to the iPac-9302
The iPac-9302 has many built-in I/O devices. Not all of these devices are support in the .NET MF
port. Some are not support because .NET MF itself doesn’t have the capability, and others are
future supported items.

2.3.1 What does the .NET MF port support on the iPac-9302
The first versions of the iPac-9302 / .NET MF port (V1.0 & V2.0) supported, GPIOs, interrupt
GPIOs, debug serial out, SPI, and Flash storage.

Version 2.5 adds support for a second serial port for application use, analog-to-digital converters
(ADC), Pulse Width Modulators (PWM), and Ethernet (TCP/IP and Sockets).

Version 4.0 R1 supports the same I/O as version 2.5. A planed Version 4.0 R2 could add support
for SD card, battery backed RTC, and possibly application deployment and debug over Ethernet.

Feature .NET MF Release for the EDK
 V1.0 and V2.0 V2.5 V4.0 R1

GPIO X X X
Interrupt GPIO X X X
COM1 Debug Serial X X X
COM2 EDKPlus X X X
SPI X X X
Flash Storage - EWR X X X
ADC X X
PWM X X
Ethernet X X
Application development over Ethernet /
COM1 freed up for applications

 Future

SD Card Support Future
Battery Back RTC – EDKPlus only Future
USB Host N/A N/A N/A

Table 2.9 - .NET MF Version and Support History of the iPac-9302

A time delay added in the registry for deploying applications was introduced in V2.5. The reason
the delay was needed was for the Ethernet implementation. These keys can (and should) be
removed with V4.0; more discussion on this later in the chapter.

NET MF doesn’t currently have internal API support for USB Host interfaces, thus the USB host
ports on the iPac-9302 are not available.

2.3.1.1 Boot Loader
There is a boot loader called TinyBooter that is on the flash chip. The boot loader will help with
updating the CLR in the future.

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 26

After TinyBooter boots up, there is a boot delay before the CLR is launched. The delay allows
interacting with TinyBooter before the CLR launches so that the CLR can be updated in the
future. The boot delay is 20 seconds if MFDeploy is connected via the debug COM port, or 5
seconds if a terminal application like SJJ_COMM Lite is connected via the debug COM port.
When using MFDeploy, the boot delay can be forcibly terminated early. How to terminate the
boot delay in MFDeploy will be described later. During a normal boot operation, the iPac-9302’s
boot hardware will detect the boot loader, TinyBooter, and execute it. TinyBooter will do basic
hardware configuration and then listen for commands on the debug serial port during the boot
delay period. If it receives commands, it will respond. One such command is to flash a new
version of the CLR, and another is to erase the managed code and data areas. This will be
discussed in more detail, later. Typically, no commands are sent to TinyBooter, so it passes
control to the CLR. CLR looks for a managed code application to run. If no managed code
application is found, CLR, listens to the debug serial port for commands, such as a connect
command from Visual Studio. If a managed code application is found, it loads it and passes
control to it.

2.3.1.2 Flash Memory Map
TinyBooter, CLR, and managed code applications and data are all stored in flash memory.
Referring to Table 2.10, the TinyBooter image is stored in the “Bootstrap” area of flash memory.
When TinyBooter starts up, a decompression utility runs out of flash that decompresses the
compressed TinyBooter image to RAM and jumps to the decompressed image. At this point,
TinyBooter runs from RAM.

Sectors Start Size Usage
0 0x60000000 0x00020000 Bootstrap
1 0x60020000 0x00020000 Configuration
2-23 0x60040000 0x00020000 (each) Code
24-31 0x60300000 0x00020000 (each) Deployment
32-47 0x60400000 0x00020000 (each) Storage
48 0x60600000 0x00020000 Logging
49-62 0x60620000 0x00020000 (each) Reserved
63-66 0x607E0000 0x00008000 (each) Reserved

Table 2.10 - Flash Memory Map

CLR and its configuration data are stored in the “Configuration” and “Code” sections of flash
memory. When CLR is running, it has to be able to write to flash memory. When CLR is writing
to flash memory, it cannot be executing its instructions from flash memory at the same time;
therefore, when control is first passed from TinyBooter to CLR, CLR relocates a certain number of
its routines from flash memory to RAM, where they will be accessed during normal execution.
Routines such as those that write to flash memory are relocated to RAM and executed from RAM
during normal CLR operation. With the exception of routines like those, CLR runs from FLASH.

Managed code modules and their associated data are stored in the “Deployment” section and
“Storage” section of flash memory respectively. Managed code modules and data are almost
exclusively flash memory entities.

There is also a “Logging” section that has proprietary use by Microsoft. Logging is not supported
in the EDK.

Finally, not all of the flash memory has been configured for use in this version of the EDK. There
are “Reserved” sections of memory that can be optionally included for use at a future time.

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 27

There is 0x100000 bytes (1 MByte) each of managed code application space, and data storage
space. As you can see there is a lot of room for storing program and data.

2.4 MFDeploy Utility and Setting Static TCP/IP
MFDeploy is a combo graphical GUI and command line interface program that is used to update
the CLR and erase application deployment sectors in flash. If the program is started without
parameters, a graphical GUI interface starts up. It takes several seconds to launch, so be patient
when launching MFDeploy.

Fig 2.8 - MFDeploy

2.4.1 Command line options
You can perform some of the functions from the command line.

Usage: MFDeploy [COMMAND[:CMD_ARGS]] [/I:INTERFACE[:INTEFACE_ARGS]] [FLAG]

Where COMMAND is:

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 28

Command Description
Erase Erases deployment sectors.
Deploy:<image file>[;<image file>]* Deploys the given SREC (.hex) files to the device.
Ping Verifies connection with device.
Reboot[:Warm] Reboots the device. Warm option only restarts the CLR.
List Lists available ports (USB and Serial).
Help Displays this screen.

Table 2.11 - MFDeploy Commands

Where INTERFACE is:

Interface Type Description
Serial:<port_num> Identifies serial port number for the device.
USB:<usb_name> Identifies USB port name for device.
TCPIP:<ip_addr> Identifies TCP/IP address for device.

Table 2.12 - MFDeploy Interface Types

Note: If two interfaces are given, the second is assumed to be for Tinybooter.

The graphical GUI version also comes with some extensible debug plug-ins that provides further
capabilities for development. We will primarily be using the graphical GUI version to interact with
the iPac-9302 in these exercises.

2.4.2 Clearing the previous application

If you are having trouble downloading an application, you may have to erase the deployment area
before attempting to deploy a new application build. Keep in mind that the CLR is not real-time,
nor preemptive, so if you have an application running that is dominating the CLR’s resources, it
may not be able to respond to connect and deploy commands from Visual Studio. This is
especially true if you have an application with runtime errors that have not be debugged, yet. The
solution is to erase the current application using TinyBooter, and then rerunning the CLR without
the competing application. To erase a managed code application, do the following:

1. Power down the iPac-9302.
2. Make sure the serial cable is connected to the development PC and the debug port on

the iPac-9302.
3. Open MFDeploy in graphical mode.
4. Select the appropriate COM port for you development PC. And from the dropdown select

Target->Connect.
5. Power up the iPac-9302.
6. Watch the output window at the bottom of the MFDeploy form. When TinyBooter signs

on and displays its version, click the Ping button to confirm that you are talking to Tiny
booter.

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 29

Fig 2.9 - MFDeploy Ping TinyBooter

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 30

Fig 2.10 – MFDeploy TinyBooter Ping Response

7. When you get a response from TinyBooter, click the Erase button.

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 31

Fig 2.11 - MFDeploy Select Erase Managed Code Application

8. MFDeploy will then give you a confirmation dialog. Click Yes in the confirmation dialog

box. This will erase the application area in flash.

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 32

Fig 2.12 - MFDeploy Erase Managed Code Confirmation

9. MFDeploy will show a status dialog showing connecting to the device.

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 33

Fig 2.13 - MFDeploy Device Connection Status Dialog

10. After connecting to the device, MFDeploy will show an erase status dialog as it actually

erases the managed code application and its data.

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 34

Fig 2.14 - MFDeploy Application Erase Status Dialog

11. When the erase operation has completed and the status dialog box has closed, you can

wait the 20 second MFDeploy boot delay, you can clear the bootloader flag (discussed
next), or you can power cycle the iPac-9302 to boot the CLR.

12. Download the new application from Visual Studio.

NOTE: If MFDeploy complains about access to the COM port, you might need to close Visual
Studio. Visual Studio sometimes locks access to the COM port, and will not relinquish it.

13. When the CLR loads, it will output version information, network configuration, and
assembly information. With the managed code application area erased, there will be a
delay, as the CLR searches for an application signature in the deployment area and then
it will show that it cannot find an entrypoint and is waiting for debug commands.

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 35

Fig 2.15 - CLR Booted with No Managed Code Application

2.4.3 Clearing the Bootload Flag
When the iPac-9302 is booted with MFDeploy connected to the debug port, TinyBooter sets a
bootload flag, that tells TinyBooter to delay loading the CLR. The time to wait is set to 20
seconds. After the 20 second delay, the bootloader flag is clear, and TinyBooter loads the CLR.
MFDeploy has a Plug-in command to force the clearing of the bootloader flag, so that you can
force TinyBooter to load the CLR without waiting the entire 20 seconds. To clear the bootloader
flag:

1. Open MFDeploy in graphical mode.
2. Select the appropriate COM port for you development PC. And from the dropdown select

Target->Connect.
3. Power up the iPac-9302.
4. Watch the output window at the bottom of the MFDeploy form. When TinyBooter signs

on, from the dropdown select Plug-in->Debug->Clear BootLoader Flag.

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 36

Fig 2.16 - MFDeploy Select Clear BootLoader Flag

5. After selecting Clear BootLoader Flag, TinyBooter will terminate the boot delay and

launch the CLR.

2.4.4 Setting Static TCP/IP
The default Ethernet configuration for the EDK as-shipped is to use DHCP to obtain an IP
ADDRESS. As .NET MF is loading, the boot sequence looks to get an IP address using THE
DHCP discovery sequence. The device will send out a request and it will wait 8 seconds for a
response from a DHCP server. If there is no response, the device will repeat the request and
and wait up to 5 times, before it will fail and complete the boot process. The delay will take a long
time if the Ethernet cable is not connected or a DHCP server is not available. If you want to run
without Ethernet or DHCP services, to get around the delay, you will want to set a static IP
address. MFDeploy gives you the capability to select between DHCP or static IP address mode.
MFDeploy can be used to set the network configuration via TinyBooter or the CLR. The
MFDeploy commands are the same for either and the results are the same. The only difference is
that MFDeploy must be disconnected to set the network configuration from TinyBooter, but from
the CLR you can be connected. To change the network configuration to static IP via TinyBooter,
do the following:

1. Power down the iPac-9302
2. Make sure the serial cable is connected to the development PC and the debug port on

the iPac-9302.
3. Open MFDeploy in graphical mode.

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 37

4. Select the Serial device and the COM port that the iPac-9302 debug serial port is
connected to.

5. From the dropdown select Target->Connect so you can observe the boot-up process
and confirm that TinyBooter has booted up.

6. Power up the iPac-9302.
7. When TinyBooter logs on, click on Ping to verify that you are talking to TinyBooter.
8. From the dropdown select Target->Disconnect.

Fig 2.17 - MFDeploy Target Disconnect

9. ,Select Target->Configuration->Network.

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 38

Fig 2.18 - MFDeploy Configuration Nework Select

10. MFDeploy will open a dialog for the network configuration settings.

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 39

Fig 2.19 – Network Configuration Settings

11. To set a static IP address, uncheck the DHCP: Enable box, and you will then be able to

set a Static IP address, subnet mask, default Gateway, etc.

Note: the MAC address shown in the configuration settings dialog is not the devices actual MAC
address and changing the value will not change the device’s MAC address. The MAC address is
set by the manufacturer and is not modifiable.

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 40

Fig 2.20 - Set Static TCP/IP

12. Click the Update button when finished.
13. The network configuration settings will be set and the CLR will load after the boot delay

time.

Note: to set the static IP address via the CLR, you do not have to disconnect MFDeploy. Simply
boot TinyBooter, allow it to load the CLR and then select Target->Configuration->Network and
follow the same steps as 10. & 11. Above. After the configuration has been updated, the CLR will
reboot after the MFDeploy boot delay time.

2.5 SJJ_COMM Lite Utility
Although MFDeploy supports a COM port – debug connection, the utility in this mode is not totally
passive and can cause some issues on the debug port. Windows Vista and Windows 7 don’t
provide HyperTerminal for terminal communication. To address these two issues, the
SJJ_COMM Lite utility provides basic ASCII serial communications for capturing debug output.
SJJ_COMM Lite requires .NET Framework 2.0. SJJ_COMM Lite is preconfigured for the correct
COM port parameters (115200, 8-N-1) to talk to the iPac-9302. All you need to do is select the
correct COM port. When you select the COM port from the drop-down, it automatically connects
to that COM port. When you want to download from Visual Studio, click the Disconnect button
and SJJ_COMM Lite will disconnect from the COM port. When you are ready to monitor, again,
simply click the Re-Connect button.

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 41

The monitor window will show ASCII data as it receives it on the selected COM port and will scroll
as required, If you wish to save the data monitored to a file, simply disconnect and click the Save
RX button and you will be presented with a save dialog box. To clear the monitor window, click
the Clear button.

Fig 2.21 - Data Capture

If you monitor the bootup of the system via SJJ_COMM Lite or other terminal application, the
beginning of the captured output will appear similar to the following:

TinyBooter v4.0.1681.0
CirrusEP9302_BSP4_1 Build Date: Dec 11 2009 15:56:09
SJJ Build V4.0.3.3.b3r
ARM Compiler version 300651
MSdbgV1__*** nXIP Program found at 0x60040000
Estimated Network RAM usage: 129667 (bytes)
ip address from interface info: 0.0.0.0
mac addrress from interface info: 0.50.c2.e.a.f7
MULTICAST SOCKET_ERROR: 10057
SJJ Build V4.0.3.3.b3r
.NetMF v4.0.1681.0
CirrusEP9302_BSP4_1, Build Date:
 Dec 11 2009 15:58:08
ARM Compiler version 300651

TinyCLR (Build 4.0.1681.0)

Starting...
Created EE.
Started Hardware.
MSdbgV1MSdbgV1?o?i????_MSdbgV1??#~?????%?y????_???8v?????RO^????MSdbgV1MSdbgV1MSdb
gV1?_yN????_???I????_??M_????MSdbgV1MSdbgV1_?b!!????MSdbgV1_?G:)????MSdbgV1_?
9????MSdbgV1<???????0_??????MSdbgV1MSdbgV1_
2???????e?????MSdbgV1__]??????Z_J?????MSdbgV1___NP|?????H???????MSdbgV1MSdbgV1__~H
??????x?=??????????????uw?????MSdbgV1___?m????????-
??????_????????_?????MSdbgV1MSdbgV1????????MSdbgV1MSdbgV1MSdbgV1MSdbgV1MSdbgV1MSdb

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 42

gV1MSdbgV1MSdbgV1MSdbgV1MSdbgV1MSdbgV1MSdbgV1?_??????__MSdbgV1MSdbgV1MSdbgV1MSdbgV
1MSdbgV1g?(_????uJ?_????s?__????_W??.????ER_9????C??>????_MSdbgV1MSdbgV1)???????_M
SdbgV1
{??????_MSdbgV1O_I?????_MSdbgV1s?_?????_MSdbgV1MSdbgV1_MSdbgV1??
y????_MSdbgV1?QLY????_?>aA????_MSdbgV1_MSdbgV1_MSdbgV1?+_6????__MSdbgV1?hq????_MSd
bgV1_t_?_????_MSdbgV1f?__????_H??!????_ZtG6????MSdbgV1MSdbgV1????????_MSdbgV1MSdbg
V1????????????????????????_??[?????MSdbgV1_MSdbgV1_MSdbgV1_$???????_.???????t?:???
??_~?!?????_H#`??????kei????MSdbgV1MSdbgV1_MSdbgV1_?[
????MSdbgV1?
 ?9????%??f????MSdbgV1_7[_q????MSdbgV1__,?V????MSdbgV1_C!C_????MSdbgV1_Q??
 ????MSdbgV1_?iF??????????????????????#p??????A??????MSdbgV1MSdbgV1__?|3??????6
????????????????i????MSdbgV1???_????MSdbgV1??R!??????d1????MSdbgV1____MSdbgV1MSd
bgV1MSdbgV1MSdbgV1?8???????jE??????
s???????????????q?????MSdbgV1?_????????G??????__?????????????:??i????6_.f????"X_v?
???____MSdbgV1l_?.????`?_!????_????????MSdbgV1MSdbgV1_MSdbgV1MSdbgV1MSdbgV1MSdbgV1

 OW?p????C?| ????_MSdbgV1=??_????_MSdbgV1_MSdbgV1??/ ????_?5nG????_MSdbgV1???7????j
"(?????_P_??????_No debugger!
Create TS.
 Loading start at 6004008c, end 6004eed0
Attaching file.
Assembly: mscorlib (4.0.1681.0) (3572 RAM - 29700 ROM - 17609 METADATA)

What looks to be garbage characters debug frames for MFDeploy and can be ignored.

2.6 Upgrading the .NET MF on the iPac-9302
When updates to the bootloader and CLR are made available, the Cirrus download.exe utility is
used to update TinyBooter and the MAC address (if required). MFDeploy will be used to deploy
the updated CLR.

There are three parts to updating the .NET Micro Framework on the EDK/EDKPlus. The first is
downloading the MAC address (if required), the second is the downloading the bootloader binary,
and the third is deploying the CLR binary.

Part 1 – Download the MAC Address – Optional if already installed
Every network port must have a unique MAC address. The MAC address is supplied in a small
binary file that must be downloaded before downloading TinyBooter. The MAC address is placed
in a reserved region of flash that the Ethernet driver can access. The download.exe “option –o”
for load address offset must be used. The Cirrus download.exe utility is supplied in the ZIP file
with the exercises.

If you have a board with the MAC address installed, then you can skip this step.

1. Power down the iPac-9302.
2. Make sure the Serial cable is connected between the iPac-9302 and the development

machine.
3. Move Jumper JB4 (near the JTAG connector) from normal to serial (pins 1 and 2).

Jumper JB4 Configuration
1 2 Serial Boot through UART 1
2 3 Normal Boot from Flash.

4. Open a command window, and run download.exe in a CMD shell as follows:

download –p n –o 0x7f8000 mac_XXXXXX.bin

where: n is the COM port number, i.e. 1 for COM1, 2 for COM2, etc
where: –o <offset> address.bin

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 43

Note: download -h will list all command line options

5. The utility will prompt to power on the iPac-9302. Power up the board.

6. Wait for the update to complete. The download utility will burn the MAC address to flash.

Be patient as it goes through the flash write operation. You do not want to interrupt
power or press the reset switch during the flashing operation.

7. Leave the command window open to download the bootloader, go to Part 2

Part 2 – Downloading the new TinyBooter
In order to download the bootloader, the Cirrus download.exe utility is used. This utility is supplied
in the ZIP file with the exercises. To use the download utility:

1. Power down the iPac-9302.
2. Make sure the Serial cable is connected between the iPac-9302 and the development

machine.
3. Move Jumper JB4 (near the JTAG connector) from normal to serial (pins 1 and 2).

Jumper JB4 Configuration
1 2 Serial Boot through UART 1
2 3 Normal Boot from Flash.

4. In the command window enter the following to download the bootloader:

download -p n TinyBooterDecompressor.bin

where: n is the COM port number, i.e. 1 for COM1, 2 for COM2, etc

Note: download -h will list all command line options

5. The utility will prompt to power on the iPac-9302, reset the iPac-9302.

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 44

Fig 2.22 - Downloading TinyBooter

6. Wait for the update to complete. The download utility will first download the new
bootloader image into RAM, and then it will burn that image to flash. Be patient as it
goes through the flash write operation. You do not want to interrupt power or press the
reset switch during the flashing operation.

7. Power down the board.
8. Once completed, replace JB4 jumper to the normal (pins 2 and 3) boot position. The

system is ready for the next step.

Part 3 – Deploying the new CLR image
The final step is to deploy the new CLR image.

1. Open MFDeploy
2. Set “Device” to serial and the serial port that is going to be used for download.
3. Make sure the Serial cable is connected between the iPac-9302 and the development

machine.
4. Select Target->Connect.
5. Click the Image File Browse button to browse to the new CLR HEX binary files.

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 45

Fig 2.23 - MFDeploy CLR Image File Browse

6. Navigate the browse dialog and select the 2 CLR HEX binary files. Select both files.

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 46

Fig 2.24 - MFDeploy Select CLR HEX Binary Files

7. Power on the iPac-9302 board.
8. When TinyBooter boots up signs on, click on Ping to verify that MFDeploy is talking to

TinyBooter.
9. Select Target->Disconnect.
10. Click on Image File Deploy.

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 47

Fig 2.25 - MFDeploy Image File Deploy

11. When finished deploying the new CLR image, select Target Connect.
12. Reboot the iPac-9302 and observe that the target boots to TinyBooter and then loads the

new CLR. The system is ready for applications.

2.7 Important note for those upgrading from V2.5 with Ethernet

.NET MF V2.5 release included support for Ethernet. Some registry keys were required in order
to get around some timing issues with Visual Studio for application deployment. These registry
keys caused longer communications delays and increased the number of retries when Visual
Studio was connecting to the target device. These delays are not needed for V4.0. These keys
should be removed. The following are the registry keys that must be removed:

[HKEY_CURRENT_USER\Software\Microsoft\.NetMicroFramework\NonVersionSpecific\Timing\A
nyDevice]
"timeout"=dword:0000ea60
"retries"=dword:0000001E
"override"=dword:00000001

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 48

2.8 Summary
The chapter covered the features supported with the V4.0 .NET MF on the iPac-9302. Make sure
that you have set up the board properly noting the revision of the board. MFDeploy and
SJJ_COMM Lite were discussed and will be used with the various exercises. The next chapter
dives into the concept of .NET MF and your first .NET MF application

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 49

3 The .NET Framework Concept and the first .NET
Micro Framework Application

Many programming languages support object oriented programming (OOP). Most of these
languages use the same concepts and principles to support reusable code. Here, we are going to
look at the common definitions and then dive into the .NET MF SDK to write a program.

3.1 OOP Put into Practice
In OOP, the key word is “Object”. When we are reusing code, we are taking advantage of objects
that have been already created or objects we create ourselves. An “Object” is a little program
snippet that manipulates and communicates information and manage data. Objects can be as
simple as a math equation or represent something as big as a network connection. They contain
what are called “Properties” and “Methods”. Basically, Properties represent data and Methods
represent actions. The Properties of a particular Object are data values that describe the
attributes of the thing the Object represents. The Methods of a particular Object are the actions
(subroutines or functions) that manipulate whatever the object represents.

The classic example of an object is to think of a file on a hard drive. A file can have properties
such as date created, size, name, author, etc. You can perform actions on a file such as move,
create, delete, read, write, save, etc. You can have a file object that provides the properties and
methods to act on any file, and you can re-use this code many times in an application.

In Visual Studio, you will hear and read about classes. A “Class” is an object’s definition. Classes
and objects are interchangeable in the world of Windows programming. Many of the I/O objects
that will be accessed by your .NET MF managed code application will be based on classes
defined by the .NET MF class libraries.

The other word you will run across is “Instance”. When you use the class of an object in a
program, you are getting an Instance of the class. A distinction is made that you are actually
getting a copy of the class and not the actual class itself. You can perform all sorts of
manipulations with the copy, but the original class will not change. This is at the heart of OOP.

Many classes can share the same methods and properties, and thus can be grouped into a base
class. Where the base class holds the common methods and properties, and the individual
classes hold the methods and properties unique to the sub-class.

For example, a Cessna and a Boeing 747 are airplanes, but have slightly different features.

Fig 3.1 - Airplane Class Example

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 50

Another example is categories in a book store. The common feature is they are books, but books
of the same type are stored in a common location: fiction, Non-fiction, biography, history, travel,
computer, etc. The categories make it easier to locate a specific book.

Fig 3.2 - Bookstore Class Example

The subclasses “inherit” properties and methods from the base class. Inheritance is an
importance part of OOP.

When we write .NET MF programs, we will take advantage of what is called “namespaces”.
Namespaces use “dot” syntax to provide a hierarchy scheme for the various classes. This makes
programming a little easier and the editor can help out as you type in your code.

Fig 3.3 - .NET MF Namespaces

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 51

3.2 C#, Jitting, and Garbage Collection
C# is currently the only programming language supported by .NET MF. C# is a powerful,
component-oriented language. C# is at the heart of the development of .NET Framework. If you
are used to writing applications in C, C++, or Java, then the transition to C# should not be difficult.

Unlike C or C++ of the past, when C# code is compiled, it is turned into an executable module
called an assembly. An Assembly has two parts: Intermediate language (IL) which contains the
executable portion of the program, and Metadata, which describes the assembly’s contents.

Fig 3.4 - Assembly

When the application is executed, the .NET Framework runtime compiles the assembly into
actual machine code for execution. It will not compile the complete code all at once, only the
portions it needs to execute. This is called Just-In-Time compilation or “jitting” or JIT. When we
compile the .NET MF code, we will create intermediate language assemblies that will be
downloaded to the CLR for execution using the CLR’s JIT compiler.

Besides compiling on the fly, there is another activity that is going on behind the scenes. Memory
management in an embedded system is one of the most critical features for a system’s durability.
The biggest programming task with a real-time OS is to manage memory in the application, and
many programs don’t free up the memory for reuse. Un-freed memory (aka memory leaks)
impacts the performance of the system and can shorten the uptime of a system. .NET and Java
were created to help with this issue specifically by implementation of automatic memory
management or “garbage collection”. .NET MF includes just such a memory manager. As object
instances get destroyed, the garbage collector runs from time to time to free up memory for the
system.

3.3 .NET MF SDK
The .NET MF SDK contains assembly files, documentation, example applications, and tools. You
need to install Visual Studio 2008 with SP1 or higher, or Visual C# Express 2008 before installing
the .NET MF SDK. Visual Studio 2010 is not yet supported. To be sure that you have the latest
service pack installed, after you complete the installation of Visual Studio, launch it and from the
drop-down click on “Help” and then “Check for Updates”. This will run Microsoft Update and will
check for service packs or any other updates. If Visual Studio 2008 Service Pack 1 (SP1) has not
been installed with your base installation, it will be indicated when you check for updates. Go
ahead and install SP1 and then close Visual Studio for now.

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 52

Note: If Microsoft Update does not find Visual Studio 2008 SP1, it can be downloaded from:
http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=fbee1648-7106-
44a7-9649-6d9f6d58056e

The SDK gets installed in the “\Program Files\Microsoft .NET Micro Framework” directory.
Version numbers are used to name folders for different versions of the assembly files. This is to
help support future versions of the .NET MF. The different subdirectories are as follows:

Sub Directory Notes
Assemblies These are the .NET MF class libraries used to build applications
Documentation Help files
Fonts Fonts for use with SideShow projects
Tools Debugging and emulation support

Table 3.1 - .NET MF V2.0 Sub Directories

The example .NET MF projects can be found in the MyDocuments (XP) or Documents (Vista/7)
folder under Microsoft .NET Micro Framework. The sample projects demonstrate the different
capabilities found in .NET MF.

When the SDK is installed, Visual Studio templates are added so you can quickly create classes
and applications, which brings us to the first exercise.

3.4 Exercise 3.1: Hello World

Hello World is always a popular getting started application. There is no brain surgery going on in
the Hello World application. Its intent is to have something programmatically simple to show you
the sequence of basic operations that are needed to create, build, download and run a .NET MF
managed code application. Here we will walk through creating a .NET MF application, build it,
download it and run it on the iPac-9302 device

Make sure that you have installed Visual Studio and the .NET MF SDK V4.0.

1. Create a folder location on your development PC that you can use to place all exercises.
i.e. c:\NETMF_Apps

2. Open Visual Studio or Visual C# Express Edition.
3. From the menu, select File->New->Project…
4. The New Project dialog appears; expand the Project Types on the left side under Other

Languages->Visual C#.
5. Click on Micro Framework.
6. Click on the Console Application template.
7. In the Name at the bottom, type in “HelloWorld” without the quotes.

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 53

Fig 3.5 - Visual Studio New Project Dialog

8. Keep the defaults, and click on the OK button.
9. The IDE will create a basic C# application structure. From Solution Explorer in the upper

right corner, open the Program.cs file. The program looks like this:

using System;
using Microsoft.SPOT;

namespace HelloWorld
{
 public class Program
 {
 public static void Main()
 {
 Debug.Print(Resources.GetString(Resources.StringResources.String1));
 }

 }
}

The application structure looks like a regular C# .NET console application, but without the input
arguments. The “Using” directives at the top of the code help to simplify using classes and
methods within the main body of our application. The .NET Framework contains a number of
namespaces with multiple classes. The Using directive removes writing out the whole
namespace, class, and/or method. We will take advantage of this directive in our application as
we will use the different classes for the iPac-9302.

Everything is contained in the namespace: HelloWorld. Namespaces help to group elements like
classes and other name spaces together, and help avoid name collisions with other classes and
methods. A basic class is created in the namespace: HelloWorld class. The only method within
this class is Main. As you would expect, the Main method is called by the Tiny CLR upon boot to
run your application. If you are not familiar with C#, please take a look at Appendix A for a C#
Primer and there is a good reference in the bibliography to the book Inside C# 2nd Edition.

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 54

10. After the first Debug.Print line in Main, add two Debug.Print lines to the code, that say

“Hello World!!!!!” and “SJJ welcomes you to .NET Micro Framework development.”.

C# is case sensitive; you should start typing with a capital ‘D’ as you enter “Debug”. As soon as
you type the first letter, the Intellisense in Visual Studio pops-up with some options. This helps
you quickly fill in the code. Once you finish the word Debug and you hit the period ‘.’, the
autosense pops up with options specific for the Debug class. You can select Print from the drop
down, or if Print is already selected just click the TAB key and the Print will be placed.

Fig 3.6 - Intellisense adding Print method

Once the Print method is typed in, the auto-help will display what is to be passed to the method.
In this case it is a string of text. Fill in the first debug string with “Hello World!!!!!” and repeat the
process for the second string, “SJJ welcomes you to .NET Micro Framework development.”.

Fig 3.7 - Completing the method call

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 55

The code should look like the following:

using System;
using Microsoft.SPOT;

namespace HelloWorld
{
 public class Program
 {
 public static void Main()
 {
 Debug.Print(Resources.GetString(Resources.StringResources.String1));
 Debug.Print("Hello World!!!!!!");
 Debug.Print("SJJ welcomes you to .NET Micro Framework development!");

 }

 }
}

Earlier we talked about objects and inheritance. The reason we can just type “Debug” is because
the Microsoft.SPOT name space is defined in the using directive. Otherwise you would have to
type out the full method call: Microsoft.SPOT.Debug.Print. This gets a little long and tedious. The
using directives with the different name spaces help us get to the class quickly, so we can
concentrate on creating the application rather than on typing.

11. Save the project.
12. Now let’s try running the Hello World application on the iPac-9302.
13. Make sure the Null modem cable is connected between the iPac-9302 and the

development computer.
14. Using Device Manager, make sure that your COM port is set to the following:

• Baud: 115200
• Data Bits:8*
• Parity: None
• Stop Bits: 1
• Hardware Flow control: None

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 56

Fig 3.8 - COM Port Settings

15. From the menu, with the HelloWorld project selected in the Solution Explorer, select

Project and then select HelloWorld Properties… from the submenu.
16. The project properties page appears, click on the Micro Framework tab.
17. Under Deployment, select Serial for the Transport and Com# as the Device. Where # is

the COM port number of the development computer to which you have connected the null
modem cable.

Fig 3.9 – Hello World Properties: COM Port Selection

18. Save the project.
19. Now, make sure Debug is select for the configuration.
20. Set a break point on the first Debug print line.

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 57

Fig 3.10 - HelloWorld Build & Debug Configuration

21. From the menu, select Build->Build Solution. The application should build without
errors. If there are errors, make the appropriate corrections, and rebuild the image.

22. Power up the iPac-9302. You need to wait at least 20 seconds before deploying an
application. This gives TinyBooter a chance to turn control over to the CLR. You can
also monitor the boot-up of the iPac-9302 with MFDeploy and use the clearing of the
BootLoader Flag to shorten the boot time, but remember to disconnect MFDeploy
before you attempt to deploy an application from Visual Studio. Only one
application can have the COM port open at a time. If MFDeploy is connected when you
attempt an application deployment, the deployment will fail.

23. From the Visual Studio menu, select Build->Deploy HelloWorld. This will download the
application to theiPac-9302.

When an application is downloaded to the hardware, the current application is stopped, the
application flash memory area is erased, and the new application is burned to flash.

If the deployment fails, check the COM port settings under properties and try again. Also
check for any application you may have running that uses the serial port you have connected
for deployment, like MFDeploy or a terminal emulator program. Also check the Solution
Properties Pages. In the Solution Explorer either select the Solution ‘HelloWorld’ and from
the dropdown select Project->Properties; or right-click the Solution ‘HelloWorld’ and select
Properties. In the left pane, expand Configuration Properties and click Configuration.
Make sure that the Deploy checkbox is selected for both the Debug and Release
configurations.

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 58

Fig 3.11 - Solution Property Pages

If you still cannot deploy your solution, you might also have previously deployed a bad
application that is interfering with the download or an application that has the CPU so busy,
that the CLR cannot respond to the connect request frames being sent by Visual Studio. You
may have to use MFDeploy to erase the application area as we described in section 2.4.2,
Clearing the previous application.

24. To start the debug session, hit the F5 key or from the menu select Debug->Start

Debugging. The application will be downloaded and the Visual Studio debugger window
opened. The application will run to the breakpoint.

25. From the menu, select View and then Output from the drop down.
26. You can use the familiar debug step-over, step-in, etc. to walk through the code. As you

step through the code, you will see the print statements appear in the output window.
27. Stop the debugger and close the solution when finished.

You can use SJJ_COMM to view the output or you could also receive the debug output from a
terminal application like Tera Term or HyperTerminal. Set the COM port to the following:

• Baud: 115200
• Data bits: 8
• Parity: None
• Stop bits: 1

Note: Windows Vista no longer supports HyperTerminal. SJJ_COMM can be used to capture
debug output. Make sure that you disconnect SJJ_COMM, HyperTerminal, or any other terminal
program when doing downloads from Visual Studio.

3.5 Debug Class and Download applications

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 59

We just used the Debug class to generate an output message. This may not seem like a big deal,
but the class has other methods as well:

Method Description
Assert* Overloaded. Causes a break in execution if the specified

assertion (condition) evaluates to false.
GC Runs garbage collection, a service that automatically reclaims

unused computer memory.
Print Prints a message (followed by the current line terminator) to the

standard output stream.

Fig 3.12 - Debug Class

* Not available for the EDK

The different Debug methods can be used to help output performance information to help with
debugging an application. The first method is available when an instrumented kernel is built into
the port. The iPac-9302 doesn’t have the instrumented kernel installed.

The iPac-9302 uses the serial port to download applications. A conflict can occur where a
Debug.Print call will interfere with a download of a new application. Care must be made to avoid
situations where a Debug.Print call is constantly being made which would prevent a new
application from downloading, ie, Debug.Print in an infinite loop. A condition like this may require
you to erase the application from the device before you can download an update build or different
application.

3.6 Deployment Issues
You will run into issues when deploying applications to the hardware. The problems can vary from
two Windows applications trying access the same COM port to a managed code application
deployed to the device that is crashing CLR. Here are some typical problems and solutions:

• Application download fails – first try to download again. Then check the project
properties settings and the solution properties.

• Another application is using the COM port. Visual Studio needs exclusive access to the
COM port, so make sure no other application is connected to the same COM port, like
your terminal emulator program or MFDeploy.

• Periodic output to the debug port from a previously deployed managed code application
will cause downloads to fail. Debug.Print called in an infinite loop will prevent applications
from being downloaded. The best solution is to use MFDeploy to Erase the application
space and then try the download, again.

• Application fails to download no matter what - Toggle the Transport selection in the
Project Properties back to Emulator, click save while in the Project Properties window,
force a complete rebuild by selecting from the drop-down Build->Rebuild Solution, and
then click save. Go back to the Transport selection in the Project Properties and reselect
Serial and select the appropriate COM port, click save while in the Project Properties
window, force a complete rebuild by selecting from the drop-down Build->Rebuild
Solution, and then click save. Then try to download, again. Visual Studio sometimes
gets stuck and forgets where to deploy the applications. If this fails to remedy the
download failure, close Visual Studio, open visual studio, again, and go through the
transport exercise, again.

Note: Clearing out the application space is always a good way to make sure that the download
will work.

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 60

3.7 Summary: OOP to running on the Hardware
We cover the basics of going from an OOP application to running it on the device in this chapter.
Object Oriented Programming is a major development to help write applications from reusable
code. .NET Framework and .NET Micro Framework technologies are based on this concept.
There are many books that dive deeper into the theories and operation of OOP, the CLR, and C#,
but the basics were provided here as a groundwork for the following chapters.

The HelloWorld example demonstrated the Debug class and the Print method. It also
demonstrated configuring a Visual Studio solution for download and debug. Best of all we are
able to download the application to the iPac-9302 and run it.

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 61

4 Inner Process Mechanics
Writing .NET MF applications is very similar to writing C# applications for Windows. As we
mentioned earlier, you can take some examples that run on the desktop and run them in .NET
MF. The real embedded development involves architecting the applications. Careful architecture
can save time and money in the long run. In this section, we will cover the following CLR-kernel
details:

• Threads
• Thread priorities
• Interrupts

4.1 The Inner Processing Mechanics - Threads, Priorities, Round-Robin,
and Interrupts.

Traditionally, when learning a new operating system or embedded kernel, the details of the
kernel’s capabilities are discussed. We needed to cover some of the basic application and
hardware features first before we dived into this topic. Since the CLR is a managed code kernel,
many of the typical real-time requirements in other operating systems and kernels are built in. if
you are familiar with threads in .NET Framework, it is the same in .NET Micro Framework. Here is
what the CLR supports:

• Threading – A thread is a single unit of execution. Threads allow an application to
separate different operations into individual threads. Threading support in .NET MF is the
same support as in .NET Framework where the application is running as a thread that
can spawn other threads.

• Priority levels – Just like .NET Framework, there are 5 priority levels: Highest, Above

Normal, Normal, Below Normal, and Lowest. The application and threads all start with the
Normal priority level.

• Round Robin – Threads at the same priority run in a round robin of 20 milliseconds (ms)

each, but every thread will get processed at some point.

• Interrupts - One very important item to understand is that hardware interrupts in .NET MF
will NOT pre-empt the system. For a queued interrupt to run, either the current task or
thread must sleep, wait, or the 20 mSec system timer times out to switch from the current
thread to other pending threads. Interrupt latency can be as high as 20 mSec or slightly
more depending on the runtime dynamics of the CLR at the time of the interrupt. This is
very important when it comes to architecting the application; especially when high-
frequency interrupts are coming in.

The application itself is run as a thread. Creating other threads is used to divide the work of the
application. All threads are queued to run in a loop with Highest priority threads being queued first
and lowest priority threads being queued last. After the system 20 mSec time slice, a sleep, or a
wait, the CLR checks to see if a hardware interrupt has come in. If a hardware interrupt has been
queued, the CLR switches out of the current thread, and it will schedule the interrupt before
running any other threads. If no interrupts are queued, the CLR switches out of the current
thread and switches in the next thread in the queue. Exercise 4.1 will demonstrate this concept,
but first let’s talk about creating threads.

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 62

Fig 4.1 - CLR Thread Scheduling

4.1.1 Creating Threads
Threads are simply methods that perform some action. The methods can be static, if the method
is only accessed in the same class or non-static if the method is to be accessed by a different
class. Non-static methods allow for access to instance variables.

1. The first step is to create the methods that will perform the action.
2. Define a Thread method using the ThreadStart delegate. For example:

ThreadStart work = new ThreadStart(myMethod);

3. Next, define the new thread

Thread workerThread = new Thread(work);

4. Once defined, you can then start the thread:

workerThread.Startr();

A common short hand notation for creating the thread would be to combine steps 2 and 3 into
one line:

Thread workerThread = new Thread(new ThreadStart(myMethod));

Once the thread has been defined, you can get the state of the thread with the ThreadState
enumeration members:

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 63

Thread State Description
Aborted Thread is stop because of an abort request
AbortRequested Another thread is requesting the thread to stop
Background Thread is running as a background thread
Running Thread is active
Stopped Thread is inactive
StopRequested The thread has a request to stop
Suspended The thread is suspended
SuspenedRequested Another thread is requesting the thread to be suspended
Unstarted The thread has yet to be started
WaitSleepJoin Thread is blocked waiting for another object to be signaled, is a

sleep, or is wait to join another thread once it completes
processing.

Fig 4.2 - ThreadState Enumeration Members

4.2 Exercise 4.1: Looking at Processing Mechanics in Action
In this example we are going to look at the BasicProcessing project that has already been created
in the Chapter 4 folder of the examples. The application creates 4 threads on 4 methods that
perform pretty much the same actions:

string myString;
for (int y = 0; y < 50; y++)
{

myString = "Thread 1 " + y.ToString();
//Debug.Print(myString);
//Thread.Sleep(10);

}
Debug.Print("[Thread 1] completed");

There is also an Interrupt port defined for FGPIO1. The GreenLED will alternate on or off with
each interrupt that comes in. Two exercises in the next chapter shows how to use a function
generator or the 555 timer circuit to generate interrupts at a rate of 30Hz or lower. Also notice that
there is a Debug.Print statement in the method processing the FGPIO1 interrupt. Typically, you
want your interrupt callbacks to be as short as possible. Debug.Print is too long and complex of a
process, but for demonstrating how things are running in the process loop, it makes for a handy,
though not recommended example.

A terminal communication program is required to capture the debug output. You can use any
terminal application, but the instructions will refer to the SJJ_COMM Lite program.

Note: If you open the project that is supplied with the EDK, due to possible directory differences,
you will have to remove and re-add the SJJ_HardwareProvider resource.

Note: This lab assumes that you are familiar with downloading and running applications on the
iPac-9302.

1. Open Visual Studio or Visual C# Express Edition.
2. Open the BasicProcessing Project in the Chapter 6 folder of the EDK examples.
3. Since we will be downloading to the iPac-9302, you will need to setup the COM port for

your system. With the project selected in the Solution Explorer, from the Project menu
drop down, select Project->BasicProcessing properties…

4. In the Micro Framework tab, set the Transport to Serial and the Device to the COM port
on your development machine.

SJJ Embedded Micro Solutions Version 7.00

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 64

5. Build and download the application to the iPac-9302.
6. Start SJJ_COMM, and select the COM port to connect to. We will not be using interrupts

at this time, so don’t apply the FGPIO1 interrupt.
7. Power cycle the iPac-9302. You will see the debug output for the Tinybooter and CLR

scroll by. Then the application runs and outputs the following:

Hello World!
[Thread 1] completed
[Thread 2] completed
[Thread 3] completed
[Thread 4] completed
[Main] completed
Done.

Each thread completed in the order it was started since all threads are at the same priority level.

8. In SJJ_COMM, disconnect from the COM port
9. As a test, uncomment the Debug.Print lines in each of the 4 methods and the Main for-

loops.
10. Build and download the application again.
11. Using SJJ_COMM Lite, connect to the COM port.
12. Power cycle the iPac-9302. The application outputs each of the values of the for-loops.

You can see that each thread is processed some time and then the next thread runs. The
main is also scheduled to run as well. To provide easier viewing, the start of the output
has been put into columns.

Hello World!
Main 0
Main 1
Main 2
Main 3
Main 4
Main 5
Main 6
Main 7
Thread 1 0
Thread 1 1
Thread 1 2
Thread 1 3
Thread 1 4
Thread 1 5
Thread 1 6
Thread 1 7

Thread 1 8
Thread 1 9
Thread 2 0
Thread 2 1
Thread 2 2
Thread 2 3
Thread 2 4
Thread 2 5
Thread 2 6
Thread 2 7
Thread 2 8
Thread 2 9
Thread 3 0
Thread 3 1
Thread 3 2
Thread 3 3
Thread 3 4

Thread 3 5
Thread 3 6
Thread 3 7
Thread 3 8
Thread 3 9
Thread 4 0
Thread 4 1
Thread 4 2
Thread 4 3
Thread 4 4
Thread 4 5
Thread 4 6
Thread 4 7
Thread 4 8
Thread 4 9
Main 8
Main 9

13. In SJJ_COMM, Clear the output and disconnect from the COM port.
14. Now let’s look at thread priorities, but first comment out the Debug.Print lines in each of

the for-loops.
15. There are 4 commented thread priority lines just after public void Run(). Un-comment, the

lines for theThread1.Priority and theThread2.Priority.
16. Build and download the application again.
17. Using SJJ_COMM Lite connect to the COM port.
18. Power cycle the iPac-9302. The output looks like the following:

Hello World!
[Thread 2] completed
[Thread 3] completed
[Thread 4] completed
[Main] completed

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 65

[Thread 1] completed
Done.

Thread 2 was set to above normal and Thread 1 was set below normal. Thread1 finished last as
expected. You cannot tell that Thread 2 was above normal looking at this output, and Thread2
was started first.

19. In SJJ_COMM, Clear the output and disconnect from the COM port.
20. Uncomment theThread3.priority line.
21. Build and download the application again.
22. Using SJJ_COMM Lite connect to the COM port.
23. Power cycle the iPac-9302. The output looks like the following

Hello World!
[Thread 3] completed
[Thread 2] completed
[Thread 4] completed
[Main] completed
[Thread 1] completed
Done.

Thread3 was set to highest and finishes first.

24. In SJJ_COMM Lite, Clear the output and disconnect from the COM port.
25. Uncomment theThread4.priority line.
26. Build and download the application again.
27. Using SJJ_COMM Lite connect to the COM port.
28. Power cycle the iPac-9302. The output looks like the following

Hello World!
[Thread 3] completed
[Thread 2] completed
[Main] completed
[Thread 1] completed
[Thread 4] completed
Done.

Thread 4 is set to lowest; and, as expected, it will finish last. You can play with the different
priorities and changing the start order of each thread to get a feel for the processing of multiple
threads.

29. In SJJ_COMM Lite, Clear the output and disconnect from the COM port.
30. Comment the Debug.Print lines in each of the 4 methods and the Main for-loops.
31. Build and download the application again.
32. Using SJJ_COMM Lite, connect to the COM port.
33. Power cycle the iPac-9302/

[Thread 3] completed
[Thread 2] completed
[Thread 1] completed
[Thread 4] completed
Done.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 66

4.3 Summary: Architect the Image!
The previous chapter provided the basic information on how to create, download, and debug
applications. Here we looked at the inner-process of an application by the CLR. If there is
anything that we can stress in developing an embedded system, student project, or hobby
project, is that time should be taken to architect the system. A careful plan will lead to a more
robust and stable solution.

A good understanding of the inner process mechanics is very important when designing the
whole system. You don’t want to get locked into only writing an application and forget about the
system as a whole. You need to take into account how external devices interact with the system.
A device that overruns the system with interrupts can stop other processing from running, which
bring us to the next chapter on GPIOs

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 67

5 General Purpose Input/Output Pins
The previous chapter introduced the basics to programming .NET MF applications. .NET MF has
several classes that control different hardware ports. The most basic of these ports is general
purpose input/output pins or GPIOs.

GPIOs are pins that can input or output a logical 0 or 1, and some of these, when configured as
inputs, can also be used to trigger interrupts, where code execution can jump to a special
interrupt callback handler routine. In this chapter, the following will be covered:

• The different GPIO ports on the iPac-9302.
• The available GPIO classes in .NET MF.
• Exercises that demonstrate accessing the different features of GPIOs.

5.1 iPac-9302 GPIO
One of the really nice features of the iPac-9302 is that it comes with GPIO ports, a whole bunch
of GPIO ports. Some ports are available directly from the Cirrus EP9302 SOC (System On Chip)
and others have been added through the customization of the CPLD. Some of the GPIOs support
interrupts when configured at inputs, many support being configured for either input and output
operation, while the rest are in dedicated banks of input-only and output-only operation. One of
the dedicated output banks provides 8 high drive output GPIOs for connecting to higher current
devices like relays.

All of the GPIOs are brought out to different headers on the board for easy access. HDR1 has 3
banks of the dedicated GPIOs from the CPLD, including those configured for higher current drive.
HDR 2 has some of the GPIOs that come directly from the Cirrus EP9302 SOC which have
alternate functions. This will be discussed in more detail, later. HDR3 has a mixture of GPIOs
from the Cirrus EP9302 SOC and from the CPLD.

5.1.1 CPU GPIOs
There are several GPIOs available on the Cirrus EP9302 SOC. The GPIOs are grouped in Ports
of 8 pins each. Ports A, B, C, F, E, and H. There are several that are called Extended GPIOs or
EGPIOs (Ports A, B, F) that support interrupts. The rest of the GPIOs are used for input / output
only. Of course, you can poll these non-interruptible GPIOs when configured as inputs to capture
incoming logic 0’s or 1’s.

The processor doesn’t bring out all the pins for each of the ports. 8 pins are available for ports A
and B, 1 pin is available on port C, 3 on port F, 2 on port E, and 4 on port H. The iPac uses some
of the GPIOs for internal functions, so please review the tables below to see which pins are
available for general use.

Many of the CPU GPIOs are multiplexed with an alternative pin functions such as I2S or serial
port. These pins are EGPIO4, EGPIO5, EGPIO6, and EGPIO13. In future releases of the .NET
MF / iPac-9302 port, these pins maybe switched to the alternative functions, so care should be
used when selecting these pins for use with your application.

Port E is a special port for controlling the status LED indicators. The first pin of the port is
connected to the green led, which we will use in various exercises. The second pin of the port is
connected to the red LED, and is used exclusively by the boot controller for error indication and
handling and is not available for general use.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 68

Note: outputting to the red LED GPIO pin will cause the iPac to reset and run in an unpredictable
fashion.

On startup, the data registers and the data direction registers for the CPU GPIO pins are cleared.
This has the effect of setting all GPIOs to inputs; but left unterminated. the pins will float to a logic
1 or 3.3V output. You will need to take this into account when connecting any circuits to these
pins.

There are no internal pullup/pulldown resistors for the internal GPIOs. When asked for resistor
mode, always select Disabled. Any other selections will be ignored.

Finally, the SJJ Hardware provider DLL has the correct interrupt mode definitions. There are
general definitions pre-defined by the .NET MF assemblies, but you should use the constants
from the SJJ Hardware provider DLL. The iPac-9302 does support positive and negative edge
triggered interrupts; it only supports one or the other. Level sensitive interrupts are not supported.

5.1.2 CPLD GPIOs
The CPLD GPIOs are hardcoded for either Input or output. The port labeling for these GPIO ports
are W, X, Y, and Z. W and Z are input ports. Y and X are output ports. X is a special high current
drive port that can supply more current to devices like relays. Jumper JB1 (JB1 and JB5 for RV1)
is used to configure the pull up voltage for Port X GPIOs. None of these CPLD GPIOs provide
interrupts.

Fig 5.1 - CPLD GPIOs X, Y, & Z for iPac-9302 RV1

iP
ac

-9
30

2
H

D
R

1

PY7

PY6

PY5

PY4

PY3

PY2

PY1

PY0

PZ7

PZ6

PZ5

PZ4

PZ3

PZ2

PZ1

PZ0

VCC

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

/PX7

/PX6

/PX5

/PX4

/PX3

/PX2

/PX1

/PX0

1

3

5

7

9

11

13

15

33

35

37

39

41

43

45

47

49

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

17

19

21

23

25

27

29

31

HDR1

OUT1

OUT2

OUT3

OUT4
OUT5

OUT6

OUT7

OUT8

IN1

IN2

IN3

IN4

IN5

IN6

IN7

IN8

CATHGND

18

17

16

15
14

13

12

11

1

2

3

4

5

6

7

8

109

ULN2803LW

U11

1 2 3 4

8 7 6 5

10
K

 x
 4

Z1

1 2 3 4

8 7 6 5

10
K

 x
 4

Z2

+Vin

5V_VCC 3.3_VCC

CPLD_PX7
CPLD_PX6
CPLD_PX5
CPLD_PX4
CPLD_PX3
CPLD_PX2
CPLD_PX1
CPLD_PX0

1
3
5

2
4
6

JB1

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 69

5.1.3 iPac-9302 GPIO Summary Table

The following is the GPIO summary table for the iPac-9302 GPIOs that are available for the
current port of the .NET MF.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 70

Pin Signal Input / Output Which
IC?

Interrupt Power-
On

voltage
(V)

HDR1-1 PY7 Output CPLD No 01
HDR1-3 PY6 Output CPLD No 01
HDR1-5 PY5 Output CPLD No 01
HDR1-7 PY4 Output CPLD No 01
HDR1-9 PY3 Output CPLD No 01
HDR1-11 PY2 Output CPLD No 01
HDR1-13 PY1 Output CPLD No 01
HDR1-15 PY0 Output CPLD No 01
HDR1-17 PX7 High Drive

Output
CPLD No JB1 Volts

HDR1-19 PX6 High Drive
Output

CPLD No JB1 Volts

HDR1-21 PX5 High Drive
Output

CPLD No JB1 Volts

HDR1-23 PX4 High Drive
Output

CPLD No JB1 Volts

HDR1-25 PX3 High Drive
Output

CPLD No JB1 Volts

HDR1-27 PX2 High Drive
Output

CPLD No JB1 Volts

HDR1-29 PX1 High Drive
Output

CPLD No JB1 Volts

HDR1-31 PX0 High Drive
Output

CPLD No JB1 Volts

HDR1-33 PZ7 Input CPLD No 01
HDR1-35 PZ6 Input CPLD No 01
HDR1-37 PZ5 Input CPLD No 01
HDR1-39 PZ4 Input CPLD No 01
HDR1-41 PZ3 Input CPLD No 01
HDR1-43 PZ2 Input CPLD No 01
HDR1-45 PZ1 Input CPLD No 01
HDR1-47 PZ0 Input CPLD No 01
HDR2-19 EGPIO[13]/I2S-SDI2 Input/Output CPU Yes 3.32
HDR2-34 EPGIO[4]/I2S-SDO1 Input/Output CPU Yes 3.32
HDR2-35 EPGIO[5]/I2S-SDI1 Input/Output CPU Yes 3.32
HDR2-36 EPGIO[6]/I2S-SDO2 Input/Output CPU Yes 3.32
HDR3-1 HGPIO[2] Input/Output CPU No 3.32
HDR3-3 HGPIO[3] Input/Output CPU No 3.32
HDR3-5 HGPIO[4] Input/Output CPU No 3.32
HDR3-7 HGPIO[5] Input/Output CPU No 3.32
HDR3-9 FGPIO[1] Input/Output CPU Yes 3.32
HDR3-11 CGPIO[0] Input/Output CPU No 3.32
HDR3-13 EGPIO[1] Input/Output CPU Yes 3.32
HDR3-15 EGPIO[2] Input/Output CPU Yes 3.32
HDR3-17 EGPIO[3]/HDLCLK1 Input/Output CPU Yes 3.32
HDR3-19 EGPIO[6]/I2S-SDO2 Input/Output CPU Yes 3.32
HDR3-21 EPIO[10] Input/Output CPU Yes 3.32
HDR3-23 EPIO[11] Input/Output CPU Yes 3.32
HDR3-25 EGPIO[12] Input/Output CPU Yes 3.32
HDR3-27 EGPIO[13]/I2S-SDI2 Input/Output CPU Yes 3.32
HDR3-31 EGPIO[15] Input/Output CPU Yes 3.32

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 71

Pin Signal Input / Output Which
IC?

Interrupt Power-
On

voltage
(V)

HDR3-33 PW0 Input CPLD No 01
HDR3-35 PW1 Input CPLD No 01
HDR3-37 PW2 Input CPLD No 01
HDR3-39 PW3 Input CPLD No 01
HDR3-41 PW4 Input CPLD No 01
HDR3-43 PW5 Input CPLD No 01
HDR3-45 PW6 Input CPLD No 01
HDR3-47 PW7 Input CPLD No 01
Green LED Green LED Output CPU No 3.3

Table 5.1 - Available iPac-9302 GPIOs for .NET MF
1 Unterminated CPLD input voltage
2 Unterminated SOC input voltage

Note: EGPIO[14] is not available; reserved for future use as PWM.

The CPLD can be reprogrammed to support other functions than GPIOs. Please contact us for
more information.

Warning: If a GPIO port is incorrectly defined, for example defining a port as Output when it is
input only, NO error will be reported back by CLR. The application will fail outright, and you may
have to use MFDeploy to erase the application from flash.

5.2 GPIO Classes, Enumerators, and the SJJ Hardware Provider

The GPIO classes are part of the Microsoft.SPOT.Hardware assembly along with the other
hardware IO ports. There are several classes and enumerations that address the GPIO ports.

Fig 5.2 - Class members for Microsoft.SPOT.Hardware

5.2.1 GPIO Pin Enumerations

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 72

There are three enumerations that are used to help define what is supported in the hardware. The
SJJ hardware provider contains these three enumerations to define the GPIO pins, resistor
modes, and interrupt modes support by the iPac-9302.

First, there is the Cpu.Pin Enumeration, which defines the GPIO pins available. The GPIO
constants in the SJJ hardware provider are named to match the name of the port GPIO and the
header pin location on the board.

The Port.InterruptMode Enumeration allows for constants to be provided for the hardware’s
specific interrupt mode support. The iPac-9302 only supports Positive and Negative edge
triggered interrupts.

The Port.ResistorMode Enumeration defines the resistor on the port as being pull up, pull down,
or disable. The iPac-9302 doesn’t have resistors on the pins, so use only Disable.

5.2.2 GPIO Port Classes
The GPIO Port class are based off a Port Class at the base.

5.2.2.1 Port Class

The Port Class is the base class for managing GPIO pins. The class contains the Port
constructor, the port identifier property, and two methods: Dispose and Read. Read is common to
the other GPIO classes, and you will find it in each of the 3 new classes.

5.2.2.2 InputPort Class

The InputPort Class consists of the constructor and a couple of properties. The InputPort
constructor is used to define pins as input port. There are 3 ways to define the port:

InputPort (Pin portId, bool initialState, bool glitchFilter, ResistorMode resistor)
InputPort (Pin portId, bool glitchFilter, ResistorMode resistor)
InputPort (Pin portId, bool glitchFilter, ResistorMode resistor, InterruptMode interruptMode)

The InputPort is used to read the state of a GPIO pin, but if you look at the help for the InputPort
you will notice that the Read() method is not listed. The reason is that the class inherits the
properties of the base class, which is the Port Class.

5.2.2.3 OutputPort Class

The OutputPort Class consists of a couple constructors, the initial state property, and the write
method. The Write method is unique to the OutputPort Class. There are two constructors:

OutputPort (Pin portId, bool initialState)
OutputPort (Pin portId, bool initialState, bool glitchFilter, ResistorMode resistor)

The Write method writes a value to the pin – True (logic 1) or False (Logic 0).

5.2.2.4 InterruptPort Class

The InterruptPort Class is used for GPIOs that support interrupt capability. The class consists of a
property that gets or sets the interrupt mode, a method that clears the interrupt, and an event that
adds or removes callback methods.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 73

The constructor sets up the GPIO pin and the other properties of the interrupt pin.

InterruptPort (Pin portId, bool glitchFilter, ResistorMode resistor, InterruptMode interrupt)

The ClearInterrupt method is used for level sensitive interrupts. Since the iPac-9302 doesn’t
support these types of interrupts, the method will not be used.

OnInterrupt is used to define the callback from the interrupt. The exercises will demonstrate how
this event is setup and used.

The Read method is inherited from the Port class so you can read the state of an InterruptPort.

5.3 Exercise 5.1: Twiddle a Bit
The first GPIO application will simply flash the Green Led on and off. The green LED is
connected to the processor like so:

Note: If you open the project that is supplied with the EDK, due to possible directory differences,
you will have to remove and re-add the SJJ_HardwareProvider resource.

Fig 5.3 - Cirrus EP9302 Green LED

Logic 1 will turn the green LED on, and logic 0 will turn it off.

5.3.1 Create and setup the project

1. Open Visual Studio or Visual C# Express Edition.
2. From the menu, select File->New->Project…
3. The New Project dialog appears; expand the Project Types on the left side under Other

Languages->Visual C#.
4. Click on Micro Framework
5. Click on the Console Application template.
6. In the Name at the bottom, type in GreenLED
7. Keep the defaults, and click on the OK button.

D
1

R
1

Cirrus 9302 Green LED

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 74

8. Now we need to add the references to our hardware assemblies. With the project
selected in the Solution Explorer, from the menu, click on Project, and then select Add
Reference… from the drop down menu items.

9. In the .NET tab of the Add Reference dialog, select Microsoft.SPOT.Hardware.

Fig 5.4 - Visual Studio Add Reference Dialog .NET Tab

10. Click OK.
11. From the menu, click on Project, and then select Add Reference… from the drop down

menu items.
12. Click on the Browse Tab, locate and select the SJJ_HardwareProvider.DLL that came

with the exercises.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 75

Fig 5.5 - Visual Studio Add Reference Dialog Browse Tab

13. Click OK. We now have all the references to the classes. In the Solution Explorer, you

will see the newly added references under the References folder.
14. Save the project

5.3.2 Adding the code

1. From the Solution Explorer, double-click on Program.CS to open the main code module
in the editor.

2. Add the following using directives to the top of the code listing:

using Microsoft.SPOT.Hardware;
using Microsoft.SPOT.Hardware.SJJ;
using System.Threading;

3. Now we need to add a new Output port that will be used to access the green LED. After

the Debug.Print statement, add the following:

OutputPort myGreenLED;

We define a reference name of class type OutputPort for the new output port.

Warning: If a GPIO port is incorrectly defined, for example, defining a port as Output when it is
input-only, NO error will be reported back by CLR. The application will fail outright, and you will
have to use MFDeploy to erase the application from flash before you can deploy a new, corrected
version.

4. Now we need to instantiate the new port to the desired port pin. Type in the following:

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 76

myGreenLED = new OutputPort(Pins.GREEN_LED, false);

The SJJ_HardwareProvider.dll provides user friendly names for the GPIO Pins. In this
case, Pins.GreenLED is the name for the GPIO port (E) with the green LED. As you look
through the list of available pins, the pin names correspond to the available GPIOs in the
iPac-9302 – see Table 5.1 - Available iPac-9302 GPIOs for .NET MF.

5. Finally, add a while-loop that toggles the Green LED:

while (true)
{

Thread.Sleep(500);
myGreenLED.Write(true);

Thread.Sleep(500);
myGreenLED.Write(false);

}

The thread.sleep lets the application put the current thread to sleep for about a half
second. The two writes to the port are to turn the green LED on (true), and off (false)

Warning: Don’t put any Debug.Print statements in the while-loop. This can cause
interference with downloading a new application.

6. Save the project.

The main code module should now look like the following:

using System;
using Microsoft.SPOT;
using Microsoft.SPOT.Hardware;
using Microsoft.SPOT.Hardware.SJJ;
using System.Threading;

namespace GreenLED
{
 public class Program
 {
 public static void Main()
 {
 Debug.Print(Resources.GetString(Resources.StringResources.String1));

 OutputPort myGreenLED;
 myGreenLED = new OutputPort(Pins.GREEN_LED, false);

 while (true)
 {
 Thread.Sleep(500);
 myGreenLED.Write(true);

 Thread.Sleep(500);
 myGreenLED.Write(false);

 }

 }

 }
}

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 77

5.3.3 Configure Project Properties; Build, and Deploy the application.

1. Make sure the null modem cable is connected to the iPac-9302 and the development
computer.

2. With the GreenLED project selected in the Solution Explorer, from the menu, select
Project and then select GreenLED Properties… from the submenu.

3. The project properties page appears, click on the Micro Framework tab.
4. Under Deployment, select Serial for the Transport and Com# as the Device. Where # is

the COM port number of the development computer to which the null modem cable is
connected.

5. Save the project
6. From the menu, select Build, and then select Build GreenLED from the drop down

menu.
7. Make sure the iPac-9302 is powered on. You need to wait at least 20 seconds before

attempting to deploy an application. You can also monitor the boot-up of the iPac-9302
with MFDeploy and use the clearing of the BootLoader Flag to shorten the boot time, but
remember to disconnect MFDeploy before you attempt to deploy an application
from Visual Studio.

8. From the menu, select Build, and then select Deploy GreenLED.
9. The output window should show a successful download. Power down the board, wait one

second, and power up the board.

After about 6 seconds, the onboard green LED should start flashing on and off about once a
second.

5.4 Static and Instance Members

To this point, we have been coding our application in Main, but Main is a static member of the
project class. Members of a class are either static members or instance members. Static class
members are used to create data and functions that can be accessed without creating an
instance of the class. Static class members can be used to separate data and behavior that is
independent of any instance of the class. To think of it another way static members belong to the
class, itself, whereas instance members belong to an object or instance of a class. Static is really
used to group items of the same members together. This is important when dealing with the
garbage collection that is going on behind the scenes. Statics will not be destroyed, where
instances will.

You will get compile time errors if you attempt to mix static and instance members. Since we will
be using instances of hardware devices, the best approach to writing the C# applications is to
create a new class that holds the actual program. Main is just used to launch the program. The
above program would be re-written as follows:

using System;
using Microsoft.SPOT;
using Microsoft.SPOT.Hardware;
using Microsoft.SPOT.Hardware.SJJ;
using System.Threading;

namespace GreenLED2
{
 public class Program
 {
 public static void Main()
 {
 Debug.Print(Resources.GetString(Resources.StringResources.String1));

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 78

 App myApp = new App();
 myApp.Run();

 }

 }

 public class App
 {

 OutputPort myGreenLED;

 public void Run()
 {
 myGreenLED = new OutputPort(Pins.GREEN_LED, true);

 while (true)
 {
 Thread.Sleep(500);
 myGreenLED.Write(true);

 Thread.Sleep(500);
 myGreenLED.Write(false);

 }

 }

 }

}

The new class contains the functional part of the application. The Run method is executed from
Main. The instance of myGreenLED can be used by other methods or interrupt routines because
it is part of an instance, not a static. We will be using the App class programming approach for
many of the exercises ahead.

5.5 Exercise 5.2: Basic Input / Output
The previous exercise showed how to setup a GPIO for output. We will build on this concept to
show the code for setting up a GPIO as input.

Hardware needed:

• A jumper wire to connect HDR1-1 (PY1) to HDR3-1 (HGPIO[2])

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 79

Fig 5.6 - Jumper Wire HDR1-1 to HDR3-1

Note: If you open the project that is supplied with the EDK, due to possible directory differences,
you will have to remove and re-add the SJJ_HardwareProvider resource.

5.5.1 Create and setup the project

1. Open Visual Studio or Visual C# Express Edition.
2. From the menu, select File->New->Project…
3. The New Project dialog appears; expand the Project Types on the left side under Other

Languages->Visual C#.
4. Click on Micro Framework
5. Click on the Console Application template.
6. In the Name at the bottom, type in BasicIO
7. Keep the defaults, and click on the OK button.
8. Now we need to add the references to our hardware assemblies. With the project

selected in the Solution Explorer, from the menu, click on Project, and then select Add
Reference… from the drop down menu items.

9. In the .NET tab of the Add Reference dialog, select Microsoft.SPOT.Hardware.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 80

Fig 5.7 - Visual Studio Add Reference Dialog .NET Tab

10. Click OK.
11. With the project selected in the Solution Explorer, from the menu, click on Project, and

then select Add Reference… from the drop down menu items.
12. Click on the Browse Tab, and locate and select the SJJ_HardwareProvider.DLL
13. Click OK.

5.5.2 Adding the code

1. From Solution Explorer, double-click on Program.CS to open it in the editor.
2. Add the following using directives to the top of the code listing:

using Microsoft.SPOT.Hardware;
using Microsoft.SPOT.Hardware.SJJ;
using System.Threading;

3. After the Program Class. Create a new Class called App.

public class App
{

}

4. Within the App Class, let’s define an output port using the PY7 pin, an input port using
the HGPIO[2] pin, and an output port for the Green LED.

OutputPort myPY7;
InputPort myHGPIO2;

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 81

OutputPort myGreenLED;

Warning: If a GPIO port is incorrectly defined, for example, defining a port as Output when it is
input-only, NO error will be reported back by CLR. The application will fail outright, and you will
have to use MFDeploy to erase the application from flash before you can deploy a new, corrected
version.

5. Create a new method called Run:

public void Run()
{

}

6. In the Run method, create the new instances of the ports.

myPY7 = new OutputPort(Pins.GPIO_PORT_Y_7, false);
myHGPIO2 = new InputPort(Pins.HGPIO2_HDR3_1, false, Port.ResistorMode.Disabled);
myGreenLED = new OutputPort(Pins.GREEN_LED, false);

7. In the Run method, add a while-loop as follows:

while (true)
{

Thread.Sleep(500);
myPY7.Write(true);

Thread.Sleep(10);

myGreenLED.Write(myHGPIO2.Read());

Thread.Sleep(10);

myPY7.Write(false);

Thread.Sleep(10);

myGreenLED.Write(myHGPIO2.Read());

}

GPIO pin PY7 will output a 1 or a 0. GPIO Pin HGPIO[2] will read the input. The Boolean result
from the myHGPIO2.Read will be used to set the output state for the GreenLED. The green LED
will flash on and off, tracking the state of myPY7. If the jumper between PY7 and HGPIO[2] is
removed the green LED stops flashing.

8. In the Main method add the following to run the application:

App myApp = new App();
myApp.Run();

9. Save the project

The application should look like the following:

using System;
using Microsoft.SPOT;
using Microsoft.SPOT.Hardware;
using Microsoft.SPOT.Hardware.SJJ;

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 82

using System.Threading;

namespace BasicIO
{
 public class Program
 {
 public static void Main()
 {
 Debug.Print(Resources.GetString(Resources.StringResources.String1));
 App myApp = new App();
 myApp.Run();

 }

 }

 public class App
 {

 OutputPort myPY7;
 InputPort myHGPIO2;
 OutputPort myGreenLED;

 public void Run()
 {

//Connect a jumper wire between PY7 and HGPIO2
myPY7 = new OutputPort(Pins.GPIO_PORT_Y_7, false);
myHGPIO2 = new InputPort(Pins.HGPIO2_HDR3_1, false,
Port.ResistorMode.Disabled);
myGreenLED = new OutputPort(Pins.GREEN_LED, false);

while (true)
{

 Thread.Sleep(500);
 myPY7.Write(true);

 Thread.Sleep(10);

 myGreenLED.Write(myHGPIO2.Read());

 Thread.Sleep(10);

 myPY7.Write(false);

 Thread.Sleep(10);

 myGreenLED.Write(myHGPIO2.Read());

}

 }

 }

}

5.5.3 Configure Project Properties, Build, and Deploy the application.

1. Make sure the Null modem cable is connected to the iPac-9302 and the development
computer.

2. Using a jumper wire, jumper HDR1-1 (PY7) to HDR3-1 (HGPIO[2]).
3. With the project selected in the Solution Explorer, from the menu, select Project and then

select BasicIO Properties… from the submenu.
4. The project properties page appears, click on the Micro Framework tab.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 83

5. Under Deployment, select Serial for the Transport and Com# as the Device. Where # is
the COM port number of the development computer.

6. Save the project
7. From the menu, select Build, and then select Build BasicIO from the drop down menu.
8. Make sure the iPac-9302 is powered on. You need to wait at least 20 seconds before

deploying an application. You can also monitor the boot-up of the iPac-9302 with
MFDeploy and use the clearing of the BootLoader Flag to shorten the boot time, but
remember to disconnect MFDeploy before you attempt to deploy an application
from Visual Studio.

9. From the menu, select Build, and then select Deploy BasicIO.
10. The output window should show a successful download. Power down the board, wait one

second, and power up the board.

After about 6 seconds, the onboard green LED should start flashing on and off. Try disconnecting
the jumper wire, and notice that the green LED doesn’t flash.

5.6 Exercise 5.3: Polling GPIO Pins
There are situations were a program needs to wait on a GPIO pin state to perform an action. As
we already mentioned, the iPac-9302 comes with GPIOs that are interrupt capable, but many of
the GPIOs don’t have this feature. Polling can be used to wait on a state of non-interrupt capable
GPIOs.

In this exercise we are going to take advantage of a hardware characteristic in the Cirrus EP9302
processor. When an input pin of the Cirrus EP9302 SOC is left floating (not tied to anything), the
input is pulled high (Note that the CPLD inputs behave differently). We will use a wire attached to
a GPIO input port of the Cirrus EP9302 SOC as a probe to touch ground (GND) as the signal to
perform the alternative function of the exercise.

Hardware needed:

• A jumper wire

Note: If you open the project that is supplied with the EDK, due to possible directory differences,
you will have to remove and re-add the SJJ_HardwareProvider resource.

5.6.1 Create and setup the project

1. Open Visual Studio or Visual C# Express Edition.
2. From the menu, select File->New->Project…
3. The New Project dialog appears; expand the Project Types on the left side under Other

Languages->Visual C#.
4. Click on Micro Framework
5. Click on the Console Application template.
6. In the Name at the bottom, type in PollingGPIO
7. Keep the defaults, and click on the OK button.
8. Now we need to add the references to our hardware assemblies. With the project

selected in the Solution Explorer, from the menu, click on Project, and then select Add
Reference… from the drop down menu items.

9. In the .NET tab of the Add Reference dialog, select Microsoft.SPOT.Hardware.
10. Click OK.
11. From the menu, click on Project, and then select Add Reference… from the drop down

menu items.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 84

12. Click on the Browse Tab, and locate and select the SJJ_HardwareProvider.DLL
13. Click OK
14. Save the project

5.6.2 Adding the code

1. From Solution Explorer, double-click on Program.CS to open it in the editor.
2. Add the following using directives to the top of the code listing:

using Microsoft.SPOT.Hardware;
using Microsoft.SPOT.Hardware.SJJ;
using System.Threading;

3. After the Program Class. Create a new Class called App.

public class App
{

}

4. Within the App Class, let’s define an input port for the HGPIO[2] pin and an output port
for the Green LED.

InputPort myHGPIO2;
OutputPort myGreenLED;

5. Create a new method called Run:

public void Run()
{

}

6. In the Run method, create the new instances of the ports.

myHGPIO2 = new InputPort(Pins.HGPIO2_HDR3_1, false, Port.ResistorMode.Disabled);

myGreenLED = new OutputPort(Pins.GREEN_LED, false);

7. In the Run method, add a while-loop that polls on the reading of the state of HGPIO[2]

while (true)
{

if (myHGPIO2.Read() == false)
{

myGreenLED.Write(true);
}
else
{

myGreenLED.Write(false);
}

}

8. In the Main method add the following to run the application:

App myApp = new App();
myApp.Run();

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 85

9. Save the project.

The application should look like the following:

using System;
using Microsoft.SPOT;
using Microsoft.SPOT.Hardware;
using Microsoft.SPOT.Hardware.SJJ;
using System.Threading;

namespace PollingGPIO
{
 public class Program
 {
 public static void Main()
 {
 Debug.Print(Resources.GetString(Resources.StringResources.String1));
 App myApp = new App();
 myApp.Run();

 }

 }

 public class App
 {

 InputPort myHGPIO2;
 OutputPort myGreenLED;

 public void Run()
 {

myHGPIO2 = new InputPort(Pins.HGPIO2_HDR3_1, false,
Port.ResistorMode.Disabled);
myGreenLED = new OutputPort(Pins.GREEN_LED, false);

while (true)
{

 if (myHGPIO2.Read() == false)
 {
 myGreenLED.Write(true);
 }
 else
 {
 myGreenLED.Write(false);
 }

}

 }

 }

}

5.6.3 Configure Project Properties, Build, and Deploy the application.
One end of the jumper is connected to the GPIO pin. The other is used as a probe to touch and
GND the signal.

1. Make sure the Null modem cable is connected to the iPac-9302 and the development
computer.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 86

2. Using a jumper wire, connect one end to HDR3-1 (HGPIO[2]).
3. With the project selected in the Solution Explorer, from the menu, select Project and then

select PollingGPIO Properties… from the submenu.
4. The project properties page appears, click on the Micro Framework tab.
5. Under Deployment, select Serial for the Transport and Com# as the Device. Where # is

the COM port number of the development computer.
6. Save the project
7. From the menu, select Build, and then select Build PollingGPIO from the drop down

menu.
8. Make sure the iPac-9302 is powered on. You need to wait at least 20 seconds before

deploying an application. This gives TinyBooter a chance to turn control over to the CLR.
You can also monitor the boot-up of the iPac-9302 with MFDeploy and use the clearing of
the BootLoader Flag to shorten the boot time, but remember to disconnect MFDeploy
before you attempt to deploy an application from Visual Studio.

9. From the menu, select Build, and then select Deploy PollingGPIO.
10. The output window should show a successful download. Power down the board, wait one

second, and power up the board.
11. Wait until the Green LED goes out.
12. Using the other end of the jumper, touch any of the GND pins on HDR3 and then remove.

The Green LED will go one when you touch the end of the jumper wire to a ground pin
and will stay on until you remove it from the GND pin.

The while-loop is continuous, so if you would only want a single action to occur on the GPIO
signal, then using interrupts are the better solution.

5.7 Exercise 5.4: GPIO Interrupt
Interrupts break the flow of execution so something else can run and respond to an event. This
eliminates having to write polling code loops that must run in separate threads, and provides a
more timely response to events. There are 14 GPIOs that support interrupts. The InterruptPort
class in .NET MF not only has properties and methods, but it also has an event handler that is
used to attach your event response code to the occurrence of the GPIO interrupt.

The advantage that GPIO interrupts have over polling is that interrupts only occur and the
interrupt response code only runs on the instance of a signal change on a GPIO pin. You can
immediately appreciate the economy of CPU usage to handle an event, if it is handled as an
interrupt, rather than having the CPU polling for the event condition. In the polling example, the
main program had to have a loop that repeatedly had to sample the GPIO input and decide if an
event had occurred. Thus, whether an event occurs or not, the CPU is busy with event handling
code all the time. In a real-world application where the application is doing more things than just
polling for a GPIO pin state change and responding to it, the GPIO event polling would be put in
its own thread, and the other application functions would be put in one or more separate threads.
The CPU would be much busier switching among threads and polling the GPIO states, than it
would be if it could concentrate on activities other than GPIO state handling until an actual GPIO
state changed occurred. In this example, the main code does not have to run any event-specific
code until an actual event occurs. The signal change is detected by the hardware and the
system’s interrupt service routine is spawned. The system’s interrupt service routine is
connected to your event handler when you create the InterruptPort object, and it receives control
when the .NET MF CLR schedules a thread switch after a GPIO interrupt event has been
queued.

The signal change can be rising edge or falling edge. The iPac-9302 does not support level
sensitive interrupts.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 87

Fig 5.8 - Anatomy of an Interrupt Pulse

This exercise will be similar to the last exercise, but this time we will be using an interrupt to
trigger a response to turn on the LED.

Interrupts in .NET MF applications run in an Interrupt Service Routine (ISR), which is intended to
perform small atomic operations. In more complex operating systems, such as Windows CE and
TenAsys® INtime®, ISRs spawn Interrupt Service Threads (IST), which handle the bulk of the
processing. Since .NET MF only offers ISRs, you don’t want your service routines to be long or
take up too much time. If there is too much processing in the interrupt service routine, the system
will fail to see other interrupts, because interrupts are blocked when the ISR is running. The .NET
MF CLR does not support nesting of interrupts at this time, so interrupts could be missed. In the
extreme case of a long interrupt service routine and frequently recurring interrupts, the CPU can
be completely consumed with running the interrupt service routine, over and over, and the main
program will be starved out and not get any execution time at all. You will want to avoid this, so
keep your event handlers lean and mean.

Since interrupt pins can be used for things like keypads, the GPIOs also support glitch filtering to
provide de-bouncing of keys with mechanical contacts. The .NET MF API setup for the interrupt
pin provides an option for this glitch filtering. If glitch filtering is turned on, you will only be able to
interrupt the pin at a maximum rate of 50Hz. This is because a time delay is inserted in the GPIO
input response to provide the glitch filtering or de-bouncing. Disable the glitch filter option if you
need high frequency interrupts and do not have mechanical contacts directly providing the GPIO
input signal switching.

One very important item to understand is that Interrupts in .NET MF will NOT preempt the
currently running thread of the system. The interrupt will be queued until the CLR scheduler next
runs. Either the current task or thread must have an explicit thread.sleep or other activity that
would put the currently running threads to sleep and cause the CLR scheduler to run. If all
threads are in the sleep state when an interrupt occurs, the interrupt will be handled immediately.
If the scheduler is run, due to a Thread.Sleep or similar activity, the interrupt will run as soon as
the scheduler runs. If a thread is continuously active for more than 20 mSec, Then the interrupt
will have to wait for the 20mSec system timer to expire and the CLR scheduler to run for round-
robin scheduling. This is very important when it comes to architecting the application; especially
when high-frequency interrupts are coming in on the GPIO line. Put simply, the .NET MF is not a
real-time operating system. If you have repetitive GPIO events that occur at a frequency higher
than 50 Hz, you are going to miss interrupts periodically, and the system should be designed to
recover from missed interrupts.

Hardware needed:

• A jumper wire

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 88

Note: If you open the project that is supplied with the EDK, due to possible directory differences,
you will have to remove and re-add the SJJ_HardwareProvider resource.

5.7.1 Create and setup the project

1. Open Visual Studio or Visual C# Express Edition.
2. From the menu, select File->New->Project…
3. The New Project dialog appears; expand the Project Types on the left side under Other

Languages->Visual C#.
4. Click on Micro Framework
5. Click on the Console Application template.
6. In the Name at the bottom, type in InterruptGPIO
7. Keep the defaults, and click on the OK button.
8. Now we need to add the references to our hardware assemblies. With the project

selected in the Solution Explorer, from the menu, click on Project, and then select Add
Reference… from the drop down menu items.

9. In the .NET tab of the Add Reference dialog, select Microsoft.SPOT.Hardware.
10. Click OK.
11. From the menu, click on Project, and then select Add Reference… from the drop down

menu items.
12. Click on the Browse Tab, locate and select the SJJ_HardwareProvider.DLL.
13. Click OK
14. Save the project

5.7.2 Adding the code

1. From Solution Explorer, double-click on Program.CS to open it in the editor.
2. Add the following using directives to the top of the code listing:

using Microsoft.SPOT.Hardware;
using Microsoft.SPOT.Hardware.SJJ;
using System.Threading;

3. After the Program Class. Create a new Class called App.

public class App
{

}

4. Within the App Class, let’s define an interrupt port for the EGPIO[1] pin, an output port for
the PY7 pin, and an output port for the Green LED.

OutputPort myGreenLED;
InterruptPort EGPIO1;
OutputPort myPY7;

5. Create a new method called Run:

public void Run()
{

}

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 89

6. In the Run method, create the new instances of the output ports, and then set them both

low.

myGreenLED = new OutputPort(Pins.GREEN_LED, false);
myPY7 = new OutputPort(Pins.GPIO_PORT_Y_7, false);

7. Only the EGPIOs and the FGPIO can be used for interrupts. EGPIO[1] will be used for
the interrupt detection on a rising edge. Create an interrupt port just like an input or
output port:

EGPIO1 = new InterruptPort(Pins.EGPIO1_HDR3_13_CLK1_HZ, true,
Port.ResistorMode.Disabled, InterruptModes.InterruptEdgeHigh);

Notice that we use InterruptMode from the SJJ Hardware provider, and not
Port.InterruptMode. The iPac-9302 does support positive and negative edge interrupts; it
only supports one or the other, not both. Also, level sensitive interrupts are not supported.

Note: The “true” setting in the second argument of the constructor turns on the glitch filter
to help with de-bouncing on the interrupt pin. If glitch filtering is enabled, you will only be
able to interrupt the pin at a maximum rate of 50Hz. If you need high frequency interrupts
and do not have mechanical contacts switching the interrupt signal, make this setting
false. Turning on the glitch filter in this exercise is only for example purposes. It is not
required since we are driving the interrupt GPIO input with a GPIO output, not a
mechanical contact switch, so there will not be any contact bounce.

8. Now comes the tricky part, adding the event handler. Type in the following:

myEGPIO1.OnInterrupt +=

9. The Intellisense will suggest that you hit TAB to insert the rest of the line, do so and click

TAB.

Fig 5.9 - Using Intellisense to Create an Event Handler

10. Then click TAB again to create the Interrupt handler itself.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 90

Fig 5.10 - Completing the Event Handler Creation

11. In the run method, add the following after the EGPIO.OnInterrupt line:

while (true)
{

Thread.Sleep(500);
myGreenLED.Write(false);
Thread.Sleep(500);
myPY7.Write(true);//Trigger an interrupt

}

12. In the EGPIO1_OnInterrupt method, add the following:

myGreenLED.Write(true);
myPY7.Write(false); // Go low for the next interrupt

As you can see we keep things simple and short in the Interrupt routine.

13. In the Main method add the following to run the application:

App myApp = new App();
myApp.Run();

14. Save the project.

The code should look like the following:

using System;
using Microsoft.SPOT;
using Microsoft.SPOT.Hardware;
using Microsoft.SPOT.Hardware.SJJ;
using System.Threading;

namespace IntertuptGPIO
{
 public class Program
 {
 public static void Main()
 {
 Debug.Print(Resources.GetString(Resources.StringResources.String1));
 App myApp = new App();
 myApp.Run();

 }

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 91

 }

 public class App
 {

 OutputPort myGreenLED;
 InterruptPort EGPIO1;
 OutputPort myPY7;

 public void Run()
 {

myGreenLED = new OutputPort(Pins.GREEN_LED, false);
myPY7 = new OutputPort(Pins.GPIO_PORT_Y_7, false);
EGPIO1 = new InterruptPort(Pins.EGPIO1_HDR3_13, true,
Port.ResistorMode.Disabled, InterruptMode.InterruptPositiveEdge);
EGPIO1.OnInterrupt += new
GPIOInterruptEventHandler(EGPIO1_OnInterrupt);

while (true)
{

 Thread.Sleep(500);
 myGreenLED.Write(false);
 Thread.Sleep(500);
 myPY7.Write(true);//Trigger an interrupt

}

 }

 void EGPIO1_OnInterrupt(Cpu.Pin port, bool state, TimeSpan time)
 {
 myGreenLED.Write(true);
 myPY7.Write(false); // Go low for the next interrupt

 }

 }

}

5.7.3 Configure Project Properties, Build, and Deploy the application.
One end of the jumper is connected to the GPIO pin HDR3-13 (EGPIO[1]), and the other is
connected to the GPIO pin HDR1-1 (PY7).

1. Make sure the Null modem cable is connected to the iPac-9302 and the development
computer.

2. Using a jumper wire, connect one end to HDR3-13 (EGPIO[1]), and the other end to
HDR1-1 (PY7).

3. With the project selected in the Solution Explorer, from the menu, select Project and then
select InterruptGPIO Properties… from the submenu.

4. The project properties page appears, click on the Micro Framework tab.
5. Under Deployment, select Serial for the Transport and Com# as the Device. Where # is

the COM port number of the development computer.
6. Save the project
7. From the menu, select Build, and then select Build InterruptGPIO from the drop down

menu.
8. Make sure the iPac-9302 is powered on. You need to wait at least 20 seconds before

deploying an application. This gives TinyBooter a chance to turn control over to the CLR.
You can also monitor the boot-up of the iPac-9302 with MFDeploy and use the clearing of
the BootLoader Flag to shorten the boot time, but remember to disconnect MFDeploy
before you attempt to deploy an application from Visual Studio.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 92

9. From the menu, select Build, and then select Deploy InterruptGPIO.
10. The output window should show a successful download. Power down the board, wait one

second, and power up the board. The Green LED should start flashing periodically since
it is getting an interrupt every cycle through the while-loop.

5.7.4 Debugging the Interrupt

In order to debug an application with interrupts, you have to place a break point in the interrupt
routine itself. If you were to place a break point in the main program while-loop and then hit the
break point, you would never jump into the OnInterrupt code.

1. Set a break point in the while-loop.
2. Make sure that the Solution Configuration is set to Debug.
3. Power cycle the board
4. Hit F5; or from the Debug menu, click Start Debugging.
5. If the application has not already been deployed, Visual Studio will deploy it and then

launch the debugger and run the application in the debug mode. You should hit the break
point. Step over the instructions until you hit the myPY7.Write(true), and hit step over
again. The Interrupt will be called, but the debugger will never jump to the code.

6. Stop debugging.
7. Now set a second break point in the Interrupt routine.
8. Power cycle the board
9. Start Debugging.
10. Step through the code. This time when you step over the myPY7.Write(true) instruction,

you should hit the second breakpoint in the Interrupt routine, and you can debug through
the code.

11. Stop debugging.
12. Close and save the project.

Note: when you are debugging through code with interrupt handlers, the state of the device after
handling a breakpoint will not be the same as that state would have been with a free-running
system. You have to be judicious about where you place your breakpoints and how far you can
step through the code after hitting a breakpoint before stopping the debug session and
repositioning the breakpoints.

5.8 Exercise 5.5: Interrupts and Architecture
Now let’s see how interrupt timing can affect an application. A frequency generator will be needed
to generate TTL input to FGPIO1. An O-scope will be needed to see the effects of high frequency
interrupts.

Note: If you open the project that is supplied with the EDK, due to possible directory differences,
you will have to remove and re-add the SJJ_HardwareProvider resource.

1. Open the BasicProcessing application from the last chapter
2. Uncomment the Debug.Print lines in each of the 4 methods and the Main for-loops.
3. Build and download the application again.
4. Using SJJ_COMM Lite, connect to the COM port.
5. Power cycle the iPac-9302.
6. Connect a frequency generator to generate TTL input to FGPIO1, start the generator and

set it for about 30Hz. DO NOT INTERRUPT AT A HIGHER RATE. Because of the
Debug.Print the application will only handle interrupts at or below this frequency, or the
application will never processes anything else.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 93

7. Power cycle the iPac-9302. You will see the Debug.Print for the interrupt in the output.
Notice that the debug prints only occur between our other threads. The Interrupt does not
preempt the current process in action, but is scheduled in when the CLR switches from
one thread to the next.

:
:
Thread 1 27
Thread 1 28
Thread 1 29
[FGPIO1] Hardware Interrupt
Thread 3 30
Thread 3 31
Thread 3 32
Thread 3 33
Thread 3 34
Thread 3 35
Thread 3 36
Thread 3 37
Thread 3 38
Thread 3 39
[FGPIO1] Hardware Interrupt
Thread 4 20
Thread 4 21
.
.
.

Debug.Print affects the timing of the system so you may have to use other means to debug timing
issues. In this application Debug.Print affects the timing of each thread, so some threads may
loop in different order, but the threads will finish based on their priority.

.

.

.
Thread 4 46
Thread 4 47
Thread 4 48
Thread 4 49
[FGPIO1] Hardware Interrupt
[Thread 3] completed
[Thread 2] completed
[Thread 1] completed
[Thread 4] completed
Done.

If you are curious about what happens with a higher interrupt frequency, comment out the
Debug.Print line in FGPIO1_OnInterrupt, and uncomment the lines that use EGPIO10 as an
output pin. Attach an O-scope to watch the output from EGPIO10. The higher you go with the
frequency the closer you are to having CLR only service interrupts. A key point here is that you
want your interrupt callbacks to be as short as possible. Once again, it is very important to
architect the system carefully so you don’t starve out the rest of your application.

5.9 Exercise 5.6: The 555 Timer Project

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 94

The 555 Timer also known as “The IC Time Machine” has been around since 1971. It is a
versatile and stabile timer IC that supports three operating modes:

• Monostable – single pulse trigger operations.
• Astable – Free running mode that acts as an oscillator.
• Bistable – Act as a Flip-Flop.

The past projects have been using what is available on the iPac-9302. Now, we will start
connecting external circuits to the board, and in this case, we will use the 555 Timer as periodic
interrupt source.

Fig 5.11 - 555 Timer as Interrupt Source

The following equations can be used to help choose the R1, R2, and C1 for the astable mode:

• Positive Time Interval (T1) = 0.693 * (R1+R2) * C1
• Negative Time Interval (T2) = 0.693 * R2 * C1
• Frequency = 1.44 / ((R1+2R2) * C1

Hardware required:

R1 = 1K
R2 = 10K
C1 = 10uF
0.1uF
555 Timer IC
Bread board
Wire
5V DC Power Supply

JB3 - Pins 2-3 jumpered - 5V_VCC

R
1

THRESHOLD

CONTROL

TRIGGER

OUTPUT
DISCHARGE

VDD RESET

GROUND

555

6

5

2

8 4

3
7

1

U1

R
2

C
1

0.
1

uF

D
1

1K

1K

iP
ac

-9
30

2
H

D
R

3

HGPIO[2]

HGPIO[3]

HGPIO[4]

HGPIO[5]
FGPIO[1]

CGPIO[1]

EGPIO[1]

EGPIO[2]

PW0

PW1

PW2

PW3
PW4

PW5

PW6

PW7
VCC

GND

GND

GND

GND
GND

GND

GND

GND
GND

GND

GND

GND
GND

GND

GND

GND
GND

GND

GND

GND
GND

GND

GND

GND
GND

EGPIO[3]

EGPIO[6]

EGPIO[10]

EGPIO[11]
EGPIO[12]

EGPIO[13]

EGPIO[14]

EGPIO[15]

1

3
5

7

9

11
13

15

33

35
37

39

41

43
45

47

49

2

4
6

8

10

12
14

16

18

20
22

24

26

28
30

32

34

36
38

40

42

44
46

48

50

17

19
21

23

25

27
29

31

HDR3

D
2

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 95

Optional:

D1 = D2 = 2 LEDs
2 1K Resistors

With the recommended R1, R2, and C1 above are used, the frequency should be about 6 Hz
depending on the component tolerances. You may want to add LEDs to the output of the 555
circuit to allow you to visually see the output line toggling.

Note: If you open the project that is supplied with the EDK, due to possible directory differences,
you will have to remove and re-add the SJJ_HardwareProvider resource.

5.9.1 Creating and Test the 555 Circuit

1. Make sure that you have completed Exercise 5.4: GPIO Interrupt.
2. Disconnect power from the iPac-9302.
3. Use bread a board to create the 555 timer circuit, but do not connect it to the iPac-9302.

It is good practice to test a circuit like this before connecting the iPac-9302 to prevent
damaging the EP9302 SOC inadvertently.

4. Use a separate 5V DC power supply and an O-scope or frequency counter to test the
output from the 555 timer. If you have the LEDs connected, you should see them toggle.
If the LEDs are on but dim, you will need to lower the 555 timer’s output frequency.

Fig 5.12 - 555 Timer Output Waveform

5. If the 555 timer is working as expected, disconnect the power supply.

Note: The output from the 555 Timer circuit is going to be +5V to 0V. Even though the Cirrus
EP9302 is a 3.3V processor, the pins are 5v tolerant. You can connect TTL devices directly
to the processor’s GPIOs.

6. Connect the 555 Timer circuit’s GND to the iPac-9302 HDR3-14.
7. Connect the 555 Timer circuit’s Power to the iPac-9302 ’s HDR3-49, which should be set

to 5 volts by the iPac-9302 jumper JB3.
8. Remove the jumper wire if it is still connected to PY7 and EGPIO[1].
9. Connect the output of the 555 timer circuit to the HDR3-13 (EGPIO[1]) pin of the iPac-

9302.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 96

5.9.2 Modify the Exercise 5.4: GPIO Interrupt Application and Run the Application

Now we need to modify the previous Exercise.

1. Open the InterruptGPIO project.
2. Comment out the all references to myPY7, which should be 5 lines to comment out.
3. Comment out the second Thread.sleep(500).
4. Save the project

The code should look like the following:

using System;
using Microsoft.SPOT;
using Microsoft.SPOT.Hardware;
using Microsoft.SPOT.Hardware.SJJ;
using System.Threading;

namespace IntertuptGPIO
{
 public class Program
 {
 public static void Main()
 {
 Debug.Print(Resources.GetString(Resources.StringResources.String1));
 App myApp = new App();
 myApp.Run();

 }

 }

 public class App
 {

 OutputPort myGreenLED;
 InterruptPort EGPIO1;
 //OutputPort myPY7;

 public void Run()
 {

myGreenLED = new OutputPort(Pins.GREEN_LED, false);
myGreenLED.Write(false);
//myPY7 = new OutputPort(Pins.GPIO_PORT_Y_7, false);
//myPY7.Write(false);

EGPIO1 = new InterruptPort(Pins.EGPIO1_HDR3_13, true,
Port.ResistorMode.Disabled, InterruptMode.InterruptPositiveEdge);
EGPIO1.OnInterrupt += new
GPIOInterruptEventHandler(EGPIO1_OnInterrupt);

 while (true)
 {

Thread.Sleep(500);
myGreenLED.Write(false);
//Thread.Sleep(500);
//myPY7.Write(true);//Trigger an interrupt

 }

 }

 void EGPIO1_OnInterrupt(Cpu.Pin port, bool state, TimeSpan time)
 {
 myGreenLED.Write(true);

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 97

 //myPY7.Write(false); // Go low for the next interrupt

 }

 }

}

5. Make sure the Null modem cable is connected to the iPac-9302 and the development
computer.

6. From the menu, select Build, and then select Build InterruptGPIO from the drop down
menu.

7. Power on the iPac-9302. You need to wait at least 20 seconds before deploying an
application. This gives TinyBooter a chance to turn control over to the CLR. You can
also monitor the boot-up of the iPac-9302 with MFDeploy and use the clearing of the
BootLoader Flag to shorten the boot time, but remember to disconnect MFDeploy
before you attempt to deploy an application from Visual Studio.

8. From the menu, select Build, and then select Deploy InterruptGPIO.
9. The output window should show a successful download. Power down the board, wait one

second, and power up the board. The Green LED should start flashing since it is getting
repetitive interrupts from the 555 Timer circuit.

Note: the Green LED doesn’t flash at a regular rate. The CLR does not have deterministic
capability, so the interrupt response will vary from interrupt to interrupt depending on the state of
the CLR at the time of the interrupt. At any given instant, the CLR may be busy performing the
routine maintenance of the system – memory management, garbage collection, etc.

5.10 Summary: GPIO Overload
GPIOs are very common hardware in control systems, and the iPac-9302 has plenty of them. In
fact, you can add more GPIOs via the SPI port interface using a SPI to GPIO controller chip. We
talk about the SPI interface in the next chapter. The .NET MF GPIO classes offer the ability to
read, write, and catch interrupt events. The best practice for writing these applications is to create
an application class and use the Main static class to launch the application via the Run method.

We looked at different techniques to performing actions based on the state of an input GPIO pin –
Polling and Interrupts. Interrupts were generated from another GPIO port and an external circuit.
We learned to keep interrupt handler lean and mean, to maximize system performance. We will
use the knowledge of GPIOs for use with SPI ports in the next chapter.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 98

6 Serial Peripheral Interface (SPI)
The last chapter covered GPIOs. GPIOs can be used for a variety of input/output solutions and
provide the basics for understanding Boolean, 0 and 1, logic. Now, we will look at another IO
feature called SPI, which has some interesting capabilities. This chapter will cover the following:

• Basics of the SPI driver port.
• SPI classes.
• Interaction with a SPI LCD device.
• Developing a managed code driver.

6.1 SPI Basics – Not for Bit-Bang Anymore

The Serial Peripheral Interface Bus (SPI) bus is a synchronous serial data link standard that
operates in full duplex mode. It is sometimes known as a “four wire” bus because it has four basic
signals – chip select, clock, transmit, and receive. It was originally developed by Motorola.

Unlike RS232 communications, SPI allows more than one device to exist on the bus in a
host/client configuration. The iPac-9302’s SPI port acts like the master-host and there can be
several client devices on the bus. GPIOs combined with the SPI port’s chip select, can be used to
create unique slave chip select signals for each slave device that is connected to the SPI bus.
This provides the ability to connect several SPI slave devices to the iPac-9302’s SPI port and
switch among them as desired.

The naming and phasing of the SPI signals vary from vendor to vendor. The iPac-9302 uses the
following signals:

• SCLK1 – SPI Serial (Bit) Clock
• SSPTX1 – SPI Serial Output
• SSPRX1 – SPI Serial Input
• SFRM1 – SPI Frame Clock or Chip Select

Only one client device can talk to the master-host at a time. All SPI devices are tri-stated when
not selected. Only one client device can be selected at a time, so there are no conflicts on the
bus.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 99

Fig 6.1 - Connecting Two SPI Client Devices

Communication starts with the master-host configuring a clock frequency. The frequency must be
less than the maximum frequency that the client device can support, and the frame-to-frame time
must be greater than the minimum frame-to-frame time supported by the client device. The
master-host then signals a chip select low to enable the desired client device.

When a client device has been selected by the master-host, on each SPI clock cycle, a full duplex
data transmission occurs. The master-host sends data on the SSPTX1 (SPI Serial Output) line,
and simultaneously with each SPI clock cycle, data is sent from the client to the master-host on
the SSPRX1 (SPI Serial Input) line. The data sent out on the SSPTX1 line is sent out through a
shift register in the SPI controller. The client then reads the data sent on the SSPTX1 line. The
client can send data back on the SSPRX1 line, but only through a write/read operation initiated
and controlled by the master-host. The master-host then reads the data on the SSPRX1 (SPI
Serial Input) by shifting the SSPRX1 data in and doing a serial to parallel conversion.

Clearly, it can be seen that even though the write/read operation is full duplex, any data from the
client that is a response to data sent from the master-host, will be out of phase by at least one
frame. It could be more depending on the processing speed of the client. There is no higher
level framing protocol for SPI communications, so one has to know the particular communication
characteristics used by each of the client SPI devices. If the data sent by the master-host are to
be interpreted as commands to the client to which the client must respond with returned data,
then it is up to the master-host to perform the required number of write/read operations following
the transfer of a command, in order to get the required data back from the client. This usually
requires that the master-host perform one or more dummy write/read operations, i.e. the data
being sent by the master-host is ignored by the client and could be any value, but the relevant
data is the data returned by the client in the write/read operation. If the SPI device is a slow
device, relative to the master-host, the dummy read/writes can also simply be effectively no-

iP
ac

-9
30

2
H

D
R

2

ADC0
ADC2
ADC4
GND

INTR1
PLDIO_00
PLDIO_02

PLD_PWM2

ARSTN
EGPIO[5]/I2S

GND
5V_VCC

ADC1
ADC3
GND
GND
INTR3
PLDIO_01
PLDIO_03
PLD_PWM3
GND
EGPIO[14]/PWM1
GND
SFRM1
SSPRX1
GND
ASYNC
ASDI
EGPIO[4]/I2S
EGPIO[6]/I2S
GND
3.3V_VCC

GND
EGPIO[13]/I2S

GND
SCLK1

SSPTX1
GND

ABTCK
ASDO

1
3
5
7
9
11
13
15

33
35
37
39

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

17
19
21
23
25
27
29
31

U1

1

2
3

74ALS32N

aU2

4

5
6

74ALS32N

bU2

SCLK

MOSI

MISO

/CS

SPI Client 1

SCLK

MOSI

MISO

/CS

SPI Client 2

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 100

operations, in which the data in both directions is ignored and the operation is used simply to
generate a time delay so that the client can generate a response to the earlier command. Thus, it
is not unusual to see a write/read operation that is a command being sent from the master-host to
the client; the client’s returned data during this operation may be meaningless and ignored. This
would then be followed by a time delay dummy write/read operation, again, controlled by the
master-host; the data in both directions are ignored. Finally, another dummy write/read operation
would be generated by the master-host; the data to the client would be ignored but the data
received back from the client would be read and processed by the master-host.

Fig 6.2 - Typical SPI Communications Waveforms

The size of the data exchange supported by the SPI hardware can be programmed for 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15 and 16-bit data transactions, but .NET MF only supports 8 or 16-bit
data transactions.

Fig 6.2 above shows a basic 4-byte data exchange between the iPac-9302 master-host and the
LCD SPI client device we will use in the upcoming exercises. The orange signal (1) is the chip
select. The aqua signal (2) is the clock. The purple signal (3) is the SSPTX1 (SPI Serial Output)
data, the first two bytes of which are data to the LCD SPI client. The green signal (4) is the
SSPRX1 (SPI Serial Input) data, the last two bytes of which are data sent back from the LCD SPI
client. Note that the data sent by the master-host in the 3rd and 4th byte exchanges are all zeroes.
These are the dummy write/read operations, described earlier. The data is ignored by the LCD
client, and these byte exchanges are strictly for the purpose of getting data back from the LCD
client. Similarly, the data sent back by the LCD client in the first 2 byte exchanges, have no
meaning to the master-host and are ignored.

Any other devices on the SPI bus that are not selected should and must ignore any transmissions
on the lines and must not transmit on the SSPRX1 (SPI Serial Input) line.

Other than the physical layer, which we have discussed, there is no protocol associated with SPI
communications, thus there is no overhead that would be required to support some kind of
communication stack. Data can be transmitted at very high rates; clock rates up to 2 MHz are
supported by the iPac-9302 SPI controller. The flip side is that management of commands and
data between the managed code application on the iPac-9302 and each SPI client device must
be managed on an individual device-by-device basis by the managed code application. Each
device will have a different command and data exchange protocol that the managed code
application must understand and adhere to. Each device may even have a different phasing
between the chip select, the clock, and the data signals, which must be set up properly when the
SPI object is created in the managed code application. Encapsulating the device specific

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 101

protocol in a managed code driver is a method for dealing with this and will be covered later in
this section.

There are many SPI devices available such as Analog-to-Digital converters, Real-Time
controllers (RTC), GPIO expanders, 7-segment LED drivers, various PIC controllers, etc. In this
chapter we demonstrate SPI application and managed code using a SPI-to-text LCD device.

6.2 SPI Classes

There are two SPI classes and an enumeration. The SPI.ClockRate Enumeration specifies the
available SPI clock rates as a divisor of the system clock. These enumeration constants can be
used for setting the clock rate in the SPI.Configuration class.

The SPI.Configuration class is used to create a new instance of the SPI interface/client. Like
setting the baud rate, data and stop bits for an RS-232 port, the SPI.Configuration is use to set
the following:

• ChipSelect Port – The GPIO port that goes active low when a client is going to be active.
• ChipSelect Active state – True if active high or False if it is active low
• ChipSelect Setup Time – delay between when the device is selected and the clock

begins.
• ChipSelect HoldTime – defines how long the chip select stays active after the last data bit

clock has been clocked onto the bus.
• Clock Idle State – True if the SPI clock is set to high while device is idle. False if the SPI

click goes low while device is idle.
• Clock Edge – True – data is sampled on the SPI clock rising edge. False – data is

sampled on the SPI clock falling edge.
• Clock Rate – SPI clock rate.
• SpiModule – SPI bus to be used.

Fig 6.3 - SPI Classes

Once the instance of the configuration is setup, the SPI class is used to create an instance of the
port and perform the basic SPI WriteReads and Writes. The API only supports 8 and 16 bit data
transfers.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 102

6.3 Exercise 6.1: Basic SPI LCD project
The iPac-9302 was designed for headless operations, but a serial LCD text display can be easily
added using the versatile SPI port. In this exercise, we will connect a SPI LCD and write an
application that sends data to display on the serial LCD.

Hardware Requirements:

• Connection Wires – 6, .025" square socket to .025 square socket – www.e-z-Hook.com
• LCD2S-162 with 2x 16 (2 line x16 Character) LCD or equivalent -

http://microcontrollershop.com/

The actual SPI control board:
LCD2S-162 - Serial LCD Display Board with SPI/I2C Serial Bus for 2x16 LCDs

Fig 6.4 - iPac-9302 with SPI-LCD

Different combinations of the SPI controller board and Serial LCDs are available:

LCD2S 162YHA Serial LCD Display, 2x16 characters, amber LED backlight
LCD2S 162GGN Serial LCD Display, 2x16 characters, STN grey/blue, no backlight
LCD2S 162YGN Serial LCD Display, 2x16 characters, STN yellow/green display
LCD2S 162BIW Serial LCD Display, 2x16 characters, white LED backlight
LCD2S 162BIY Serial LCD Display, 2x16 characters, yellow/green LED backlight
LCD2S 162YHY Serial LCD Display, 2x16 pixel, yellow/green LED backlight
LCD2S 162GHB Serial LCD, 2x16 characters, STN grey, blue LED backlight

Table 6.1 - SPI Controller and LCD Display Combinations

6.3.1 SPI Controller Commands
Gathering the SPI commands and electrical specifications are the first step to writing the
application. The LCD2S-162’s SPI clock frequency diagram found in section 14.4 of the
Modtronix Engineering LCD2S Revision 1, Firmware V1.10, Serial LCD Display documentation
provides the information to calculate the clock-rate needed for this application. The minimum
clock pulse is 500ns high and 500ns low which means the maximum frequency is about 1 MHz,
but you have to take into account the minimum time between bytes as well, which is specified to
be 19 µSeconds. The data bits in a single byte require 8 clock periods. For the iPac-9302 SPI
controller, the delay from the negative-going edge of the chip select to the first data bit is one
clock period, and the delay from the end of the last data bit period to the negative-going edge of

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 103

the next byte’s chip select is .5 clock periods. Thus the byte-to-byte period for the iPac-9302 SPI
controller is 9.5 clock periods. If we divide the 19 µSeconds by 9.5, we have a minimum clock
period of 2 µSeconds or a maximum clock frequency of 500 KHz. Notice that the 500 KHz
maximum clock rate is considerably slower than the 1 MHz clock rate that we might have naively
chosen if we had only taken into consideration the minimum data bit clock timing. Even though
the calculated maximum clock frequency is 500 KHz, you don’t want to push the controller right to
the edge; because of thermal variations and limitations on the resolution of the actually SPI clock
divider circuitry, a small variance in the clock frequency could put you in the no-fly zone, so 300
KHz is a safe clock frequency maximum for this exercise.

The 2x16 LCD itself can be characterized as one long line of 32 characters or 2 lines of 16
characters each (1-16). Messages can wrap to the next line if the string sent is longer than 16
characters.

The address of each character:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Table 6.2 - LCD Display Character Addressing

The column numbers for each line:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Table 6.3 - LCD Display Column Addressing

Looking in the LCD2S-162 datasheet for the different commands, there are several byte
commands to control the LCD display. All of the commands must be preceded by a 0xF5, which
provides a SYNC character to the controller to let it know a command is coming.

If we simply want to write text to the first line of the LCD display, we first need to position the
cursor to line 1 and the first column of that line. The command to set cursor position is 0x8A
followed by the Row number (1 or 2) and a Column number (1-16). If we want to set the cursor to
line 1 character 0, we would send the following:

0xF5, 0x8A, 0x01, 0x01

With the cursor positioned, we can write a string of data to the LCD. The 0x80 command followed
by the string will write the data to the LCD.

0xF5, 0x80, “String”

Since SPI.Write and SPI.WriteRead are expecting Byte[] or Unint16[], the string itself will need to
be reconfigured for output. Since the commands for the LCD controller are a byte in length, we
will use a UTF8 Encoding to convert a string to byte characters.

The LCD2S-162 supports other LCD commands, but we will save these for the next exercise.

Note: It is assumed that the LCD will turn on when power is applied and display the internal
Welcome message:

Modtronix Serial
LCD Display

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 104

thus no commands are needed to enable the SPI LCD. You can check this out ahead of time by
applying 5V power to the LCD2S-162.

6.3.2 Connecting the SPI LCD to the iPac-9302

The next step is to wire up the SPI LCD to the iPac-9302. The .025" square socket to .025 square
socket jumper wires from www.e-z-Hook.com make for ideal connection wires. We will not use an
OR-gate for the chip select, since we have only the single SPI LCD on the SPI bus; so just wire
the SFRM to the CS of the SPI controller. Here are the wire signals to connect:

iPac-9302 Pin LCD Controller Pin
SCLK1 (HDR2-23) CLK (Connector X3-10)
SSPTX1(HDR2-25) SDI (Connector X3-8)
SSPRX1(HDR2-26) SD0 (Connector X3-7)
SFRM1(HDR2-24) CS (Connector X3-9)
5V_VCC (HDR2-39) 5V (Connector X3-1, 3, or 5)
Gnd (HDR2-37) Gnd (Connector X-6)

Table 6.4 - SPI LCD Display to iPac-9302 Connections

Warning: If the wires are not correctly connected you could damage the device or the iPac-9302.
Double check all connections before you apply power. Like the master carpenter who
measures twice and cuts once, check the wiring twice and power-on once. That way the iPac-
9302 will live to power-on another day.

Here is the schematic:

Fig 6.5 - SPI LCD Display Connection Schematic

If you power up the iPac-9302, the LCD will display its sign-on message.

iP
ac

-9
30

2
H

D
R

2

ADC0
ADC2
ADC4
GND

INTR1
PLDIO_00
PLDIO_02

PLD_PWM2

ARSTN
EGPIO[5]/I2S

GND
5V_VCC

ADC1
ADC3
GND
GND
INTR3
PLDIO_01
PLDIO_03
PLD_PWM3
GND
EGPIO[14]/PWM1
GND
SFRM1
SSPRX1
GND
ASYNC
ASDI
EGPIO[4]/I2S
EGPIO[6]/I2S
GND
3.3V_VCC

GND
EGPIO[13]/I2S

GND
SCLK1

SSPTX1
GND

ABTCK
ASDO

1
3
5
7
9
11
13
15

33
35
37
39

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

17
19
21
23
25
27
29
31

iPac-9302 HDR2

5V
OUT1
5V
OUT2
5V
GND
SD0
SDI
/CS
CLK

1
2
3
4
5
6
7
8
9

10

SPI LCD

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 105

6.3.3 Creating a New Application Using the SJJ_MF Console Application Template
The circuit is all set, so let’s create the application. You are probably getting tired of repeating the
same steps for every new application. Flexibility is one of Visual Studio’s great features, and
there are different ways to add on to Visual Studio. Visual Studio comes standard with the ability
to export and add on project templates. There is a project template called SJJ_MF_Console
Application.zip that provides the basic foundation for a .NET MF console application. We will use
this template to start our application development.

Note: If you open the project that is supplied with the EDK, due to possible directory differences,
you will have to remove and re-add the SJJ_HardwareProvider resource.

1. Locate the SJJ_MF Console Application.zip on the CD.
2. Copy the ZIP file to your Visual Studio templates folder. The folders location will depend

on your operating system:

• Windows XP Pro: \Documents and Settings\<your account>\My Documents\Visual
Studio 2008\Templates\ProjectTemplates

• Windows Vista or 7: \Users\<your account>\Documents\Visual Studio
2008\Templates\ProjectTemplates

• For Visual C# Express: …\My Documents\Visual Studio

2008\Templates\ProjectTemplates\Visual C#

Note: If the template does not show up, then check the path settings for your installation
by selecting Tools->Options… and then look at the “Visual Studio user project templates
location:”

Fig 6.6 Template Path Locations

3. Open Visual Studio or Visual C# Express Edition.
4. From the menu, select File->New->Project…

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 106

5. The New Project dialog appears; Click on the Visual C# projects on the left side of the
New Project dialog box. You should see a new template under My Templates called
SJJ_MF Console Application

Fig 6.7 - Including the SJJ Visual Studio Template

6. Click on SJJ_MF Console Application.
7. In the Name at the bottom, type in SPI_LCD.
8. Click OK to create the project. When you open Program.cs you will notice that the basic

structure of the application is already setup for you. You only need to add the hardware
provider for your platform.

9. From the menu, click on Project, and then select Add Reference… from the drop down
menu items.

10. Click on the Browse Tab, and locate the SJJ_Hardware provider.DLL.
11. Click OK.
12. Open Program.cs.
13. Add the following to the using list:

using Microsoft.SPOT.Hardware.SJJ;

14. Save the project

6.3.4 Adding the Code to send data to the SPI LCD
Now that we have the basic application set up, we need to configure some SPI settings and
create an instance of the SPI port. Then we need to add the code to the write a string to the SPI
LCD.

1. Before the Run method in the App class add the following:

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 107

static SPI.Configuration mySPIPortSettings = new SPI.Configuration(Pins.GPIO_NONE,
false, 0, 0, false, true, 300, SPI.SPI_module.SPI1);
SPI mySPIPort = new SPI(mySPIPortSettings);

The first line sets up our SPI port communication settings. Per our schematic, there is no
ORing of GPIO line to create the chip-select, so GPIO_NONE is set for the chip select.
The second argument sets the chip select active state, so false is required for the
negative going chip select of the SPI LCD controller. We are not using a GPIO chip select
OR’d with the SPI frame select signal, so the next two parameters, chip select setup time
and chip select hold time are not used and are set to 0’s. The 5th argument is the clock
idle state. Since the clock idle state is 0, we set this parameter to false. Next is the clock
edge that the data is read on, and that is the positive clock edge, so we set that
parameter to true. Next is the clock frequency in KHz which is set to 300 KHz. The last
parameter is the actual SPI module itself, and the iPac-9302 only has one supported.
Using the configuration settings, the next line creates a new instance of the SPI port.

2. The first step is to send the basic commands to write our string to the display. As we

learned early there are several byte commands that need to be sent. In the Run method
add the following:

// LCD send byte string to lines preamble
byte[] bWriteLCDLine1Preamble = new byte[] { 0xF5, 0x8A, 0x01, 0x01, 0xF5, 0x80 };

The above line creates a byte array with the basic commands to set the cursor position
and execute the command to write the string. This information needs to precede the
string we are sending each time. The commands can be found in the user manual for the
display.

3. Now, add the following line, which is our string to be displayed.

// Unicode literal strings
string sDisplayString1 = "SJJ EMS Welcomes to .NET MF";

4. In order for the string to be sent, we need to convert the Unicode string to a byte array
and then merge the two byte arrays together so they can be sent. Remember that all
strings in .NET MF are UTF-8 Unicode, so we will use some encoding to get the bytes.
Add the following lines of code:

// Convert string literals to byte arrays
byte[] bDisplayString1 = new byte[sDisplayString1.Length];

// convert literal unicode strings to byte arrays
System.Text.UTF8Encoding Encoding = new System.Text.UTF8Encoding();
bDisplayString1 = Encoding.GetBytes(sDisplayString1);

// Construct the final message byte array
byte[] bWriteMessageLine1 = new byte[bWriteLCDLine1Preamble.Length +
bDisplayString1.Length];

//copy the preamble for line 1 first followed by the string1 starting at the
//end of the pre-able (using the length)
bWriteLCDLine1Preamble.CopyTo(bWriteMessageLine1, 0);
bDisplayString1.CopyTo(bWriteMessageLine1, bWriteLCDLine1Preamble.Length);

5. Finally write the message to the SPI LCD:

Thread.Sleep(1000);
mySPIPort.Write(bWriteMessageLine1);
Thread.Sleep(6);

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 108

6. Save the project

Here is the entire code listing:

using System;
using Microsoft.SPOT;
using Microsoft.SPOT.Hardware;
using System.Threading;
using Microsoft.SPOT.Hardware.SJJ;

namespace SPI_LCD
{
 public class Program
 {
 public static void Main()
 {
 Debug.Print(Resources.GetString(Resources.StringResources.String1));
 App myApp = new App();
 myApp.Run();
 }

 public class App
 {
 static SPI.Configuration mySPIPortSettings = new
SPI.Configuration(Pins.GPIO_NONE, false, 0, 0, false, true, 300,
SPI.SPI_module.SPI1);
 SPI mySPIPort = new SPI(mySPIPortSettings);

 public void Run()
 {

 // LCD send byte string to lines preamble
 byte[] bWriteLCDLine1Preamble = new byte[] { 0xF5, 0x8A, 0x01,
0x01, 0xF5, 0x80 };
 // Unicode literal strings
 string sDisplayString1 = "SJJ EMS Welcomes to .NET MF";

 // Convert string literals to byte arrays
 byte[] bDisplayString1 = new byte[sDisplayString1.Length];

 // convert literal unicode strings to byte arrays
 System.Text.UTF8Encoding Encoding = new
System.Text.UTF8Encoding();
 bDisplayString1 = Encoding.GetBytes(sDisplayString1);

 // Construct the final message byte array
 byte[] bWriteMessageLine1 = new byte[bWriteLCDLine1Preamble.Length
+ bDisplayString1.Length];

 //copy the preamble for line 1 first followed by the string1
starting at the
 //end of the pre-able (using the length)
 bWriteLCDLine1Preamble.CopyTo(bWriteMessageLine1, 0);
 bDisplayString1.CopyTo(bWriteMessageLine1,
bWriteLCDLine1Preamble.Length);

 Thread.Sleep(1000);
 mySPIPort.Write(bWriteMessageLine1);
 Thread.Sleep(6);

 }

 }

 }
}

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 109

6.3.5 Configure Project Properties, Build, and Deploy the application.

1. Make sure the Null modem cable is connected to the iPac-9302 and the development
computer.

2. With the project selected in the Solution Explorer, from the menu, select Project and then
select SPI_LCD Properties… from the submenu.

3. The project properties page appears, click on the Micro Framework tab.
4. Under Deployment, select Serial for the Transport and Com# as the Device. Where # is

the COM port number of the development computer.
5. Save the project
6. From the menu, select Build, and then select Build SPI_LCD from the drop down menu.
7. Make sure the iPac-9302 is powered on. You need to wait at least 20 seconds before

deploying an application. This gives TinyBooter a chance to turn control over to the CLR.
You can also monitor the boot-up of the iPac-9302 with MFDeploy and use the clearing of
the BootLoader Flag to shorten the boot time, but remember to disconnect MFDeploy
before you attempt to deploy an application from Visual Studio.

8. From the menu, select Build, and then select Deploy SPI_LCD.
9. The output window should show a successful download. Power down the board, wait one

second, and power up the board. The LCD should display the message: "SJJ EMS
Welcomes to .NET MF". The string is longer than 16 characters so it wraps around to line
2.

Note: It is assumed that the LCD will turn on when power is applied and display an internal
Welcome message:

Modtronix Serial
LCD Display

thus no commands are need to enable the SPI LCD. You can check this out ahead of time by
applying 5V power to the LCD2S-162. If the display appears blank, you may have to add a
mySPIPort.Write({0xF5, 0x1a}) to turn on the LCD before send the display string.

6.4 Exercise 6.2: Managed Code Driver Library - Serial LCD Display
Most of the work for talking to the SPI LCD display was setting up the command to write out the
data. If you have to do this every time you want to write to the display, the application would
become huge and unmanageable. Also, there are commands to scroll the display, shift the
display, enable/disable cursors, etc. To make writing future SPI LCD applications simpler, we will
create a class driver library with all of the commands. This exercise is broken into two parts, first
create the class driver library and second creating an application that uses the class driver library.

Note: If you open the project that is supplied with the EDK, due to possible directory differences,
you will have to remove and re-add the SJJ_HardwareProvider resource.

6.4.1 Create the SPI_LCD Driver Library
Creating a Class Library is very similar to creating any project in Visual Studio.

1. Open Visual Studio or Visual C# Express Edition.
2. From the menu, select File->New->Project…
3. The New Project dialog appears; expand the Visual C# projects

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 110

4. Click on Micro Framework
5. Select Class Library

Fig 6.8 - Creating a Class Library

6. In the Name at the bottom, type in SPI_LCD_Driver.
7. Click OK to create the project.
8. With the project selected in the Solution Explorer, from the menu, click on Project, and

then select Add Reference… from the drop down menu items.
9. Add the Microsoft.SPOT.Hardware
10. Click OK.
11. Save the project

6.4.2 Adding the code to the library

1. First thing is to change the name space. Rename the namespace from SPI_LCD-Driver
to Microsoft.SPOT.Hardware.SJJ.SPI_LCD_Driver. This is how all the name spaces get
created.

2. Next, rename the Class1 to SPI_LCDDriver.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 111

Fig 6.9 - Creating the SPI LCD Class

3. Rename the Class1.cs file to SPI_LCDDriver.cs

Fig 6.10 - Saving the SPI LCD Class Driver Source File

4. In the SPI_LCDDriver class add the following lines of code for the basic LCD commands:

private const int ilineLength = 16;

//SPI Keypad Reads
private byte[] SPIWriteKeyPadBuf = new byte[3] { 0xF5, 0xD1, 0x00 };
public byte[] KeyPadReadBuf = new byte[4];

// LCD Commands
// Turn display on/off
private byte[] bWriteLCDOn = new byte[] { 0xF5, 0x1A };
private byte[] bWriteLCDOff = new byte[] { 0xF5, 0x12 };
// Backlight on/off
private byte[] bWriteLCDBacklightOn = new byte[] { 0xF5, 0x28 };
private byte[] bWriteLCDBacklightOff = new byte[] { 0xF5, 0x20 };
//Cursor operations
private byte[] bWriteLCDHomeCursor = new byte[] { 0xF5, 0x8B };
private byte[] bWriteLCDBlinkblockCursorOn = new byte[] { 0xF5, 0x18 };
private byte[] bWriteLCDBlinkblockCursorOff = new byte[] { 0xF5, 0x10 };
//private byte[] bWriteLCDCusorMoveForward = new byte[] { 0xF5, 0x09 };
//private byte[] bWriteLCDCusorMoveBackward = new byte[] { 0xF5, 0x01 };
private byte[] bWriteLCDUnderlineCursorOn = new byte[] { 0xF5, 0x19 };
private byte[] bWriteLCDUnderlineCursorOff = new byte[] { 0xF5, 0x11 };
private byte[] bWriteLCDMoveCursorRight = new byte[] { 0xF5, 0x83 };

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 112

private byte[] bWriteLCDMoveCursorLeft = new byte[] { 0xF5, 0x84 };
//Display operations
private byte[] bWriteLCDShiftDisplayRight = new byte[] { 0xF5, 0x85 };
private byte[] bWriteLCDShiftDisplayLeft = new byte[] { 0xF5, 0x86 };
private byte[] bWriteLCDShiftDisplayUp = new byte[] { 0xF5, 0x87 };
private byte[] bWriteLCDShiftDisplayDown = new byte[] { 0xF5, 0x88 };
private byte[] bWriteLCDClear = new byte[] { 0xF5, 0x8C };

//LCD Read Status
private byte[] SPIWriteLCDReadStatus = new byte[3] { 0xF5, 0xD0, 0x00 };
public byte[] ReadLCDStatusBuf = new byte[4];

// LCD send byte string to lines preamble
private byte[] bWriteLCDLine1Preamble = new byte[] { 0xF5, 0x8A, 0x01, 0x01, 0xF5,
0x80 };
private byte[] bWriteLCDLine2Preamble = new byte[] { 0xF5, 0x8A, 0x02, 0x01, 0xF5,
0x80 };

5. Add the public methods to perform the different operations. The methods will be used in
the test application.

public byte[] LCDOn()
{

return (bWriteLCDOn);
}

public byte[] LCDOff()
{

return (bWriteLCDOff);
}

public byte[] LCDBacklightOn()
{

return (bWriteLCDBacklightOn);
}

public byte[] LCDBacklightOff()
{

return (bWriteLCDBacklightOff);
}

public byte[] LCDHomeCursor()
{

return (bWriteLCDHomeCursor);
}

public byte[] LCDBlinkblockCursorOn()
{

return (bWriteLCDBlinkblockCursorOn);
}

public byte[] LCDBlinkblockCursorOff()
{

return (bWriteLCDBlinkblockCursorOff);
}

public byte[] LCDUnderlineCursorOn()
{

return (bWriteLCDUnderlineCursorOn);
}

public byte[] LCDUnderlineCursorOf()
{

return (bWriteLCDUnderlineCursorOff);
}

public byte[] LCDMoveCursorRight()
{

return (bWriteLCDMoveCursorRight);
}

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 113

public byte[] LCDMoveCursorLeft()
{

return (bWriteLCDMoveCursorLeft);
}

public byte[] LCDClear()
{

return (bWriteLCDClear);
}

public byte[] LCDShiftDisplayRight()
{

return (bWriteLCDShiftDisplayRight);
}

public byte[] LCDShiftDisplayLeft()
{

return (bWriteLCDShiftDisplayLeft);
}

public byte[] LCDShiftDisplayUp()
{

return (bWriteLCDShiftDisplayUp);
}

public byte[] LCDShiftDisplayDown()
{

return (bWriteLCDShiftDisplayDown);
}

public byte[] LCDReadStatus()
{

return (SPIWriteLCDReadStatus);
}

public byte[] LCDKeyPadRead()
{

return (SPIWriteKeyPadBuf);
}

6. Add two methods that create the byte array message for either display line and returns a

final byte array when the method is called.

public byte[] LCDLine1(string sDisplayString)
{

// Convert string literals to byte arrays
byte[] bDisplayString = new byte[sDisplayString.Length];

// convert literal unicode strings to byte arrays
System.Text.UTF8Encoding Encoding = new System.Text.UTF8Encoding();
bDisplayString = Encoding.GetBytes(sDisplayString);

// Construct the display lines
//Size the array
byte[] bWriteMessageLine = new byte[bWriteLCDLine1Preamble.Length +
bDisplayString.Length];

//copy the preamble for line 1 first followed by the string starting at the
//end of the pre-able (using the length)
bWriteLCDLine1Preamble.CopyTo(bWriteMessageLine, 0);
bDisplayString.CopyTo(bWriteMessageLine, bWriteLCDLine1Preamble.Length);

return bWriteMessageLine;

}

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 114

public byte[] LCDLine2(string sDisplayString)
{

// Convert string literals to byte arrays
byte[] bDisplayString = new byte[sDisplayString.Length];

// convert literal unicode strings to byte arrays
System.Text.UTF8Encoding Encoding = new System.Text.UTF8Encoding();
bDisplayString = Encoding.GetBytes(sDisplayString);

// Construct the display lines
//Size the array
byte[] bWriteMessageLine = new byte[bWriteLCDLine2Preamble.Length +
bDisplayString.Length];

//copy the preamble for line 1 first followed by the string starting at the
//end of the pre-able (using the length)
bWriteLCDLine2Preamble.CopyTo(bWriteMessageLine, 0);
bDisplayString.CopyTo(bWriteMessageLine, bWriteLCDLine1Preamble.Length);

return bWriteMessageLine;

}

7. Finally, let’s add two methods that write to each line of the LCD, but don’t wrap the text.

public byte[] LCDLine1NoWrap(string sDisplayString)
{

string sTrimString = "";
for (int i = 0; (i < ilineLength) && (i < sDisplayString.Length); i++)
{

sTrimString += sDisplayString[i];
}

// Convert string literals to byte arrays
byte[] bDisplayString = new byte[ilineLength];

// convert literal unicode strings to byte arrays
System.Text.UTF8Encoding Encoding = new System.Text.UTF8Encoding();
bDisplayString = Encoding.GetBytes(sTrimString);

// Construct the display lines
//Size the array
byte[] bWriteMessageLine = new byte[bWriteLCDLine1Preamble.Length +
bDisplayString.Length];

//copy the preamble for line 1 first followed by the string starting at the
//end of the pre-able (using the length)
bWriteLCDLine1Preamble.CopyTo(bWriteMessageLine, 0);
bDisplayString.CopyTo(bWriteMessageLine, bWriteLCDLine1Preamble.Length);

return bWriteMessageLine;

}

public byte[] LCDLine2NoWrap(string sDisplayString)
{

string sTrimString = "";
for (int i = 0; (i < ilineLength) && (i < sDisplayString.Length); i++)
{

sTrimString += sDisplayString[i];
}

// Convert string literals to byte arrays
byte[] bDisplayString = new byte[sTrimString.Length];

// convert literal unicode strings to byte arrays
System.Text.UTF8Encoding Encoding = new System.Text.UTF8Encoding();
bDisplayString = Encoding.GetBytes(sTrimString);

// Construct the display lines
//Size the array
byte[] bWriteMessageLine = new byte[bWriteLCDLine2Preamble.Length +
bDisplayString.Length];

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 115

//copy the preamble for line 1 first followed by the string starting at the
//end of the pre-able (using the length)
bWriteLCDLine2Preamble.CopyTo(bWriteMessageLine, 0);
bDisplayString.CopyTo(bWriteMessageLine, bWriteLCDLine1Preamble.Length);

return bWriteMessageLine;

}

8. Save the project
9. Build both a Debug and Release version of the DLL
10. Close the project when finished. We can now use the SPI_LCD_Driver class in our

applications.

6.4.3 Create a Test Application

1. Open Visual Studio or Visual C# Express Edition.
2. Using the SJJ_MF Console Application, create a new application called SPI_LCD2
3. Add the reference to the SJJ_HardwareProvider.dll
4. Open Program.cs, and add the following to the beginning of the file:

using Microsoft.SPOT.Hardware.SJJ;

5. Now add our new SPI_LCD_Driver driver library to the project. You will have to browse to

the \SPI_LCD-Driver\SPI_LCD-Driver\bin\Release or Debug to locate the DLL.

Fig 6.11 - Adding SPI_LCD Driver Reference

6. Add the Using statement:

using Microsoft.SPOT.Hardware.SJJ.SPI_LCD_Driver;

7. Save the project.
8. Before the Run method in the App class add the following to configure the SPI port:

static SPI.Configuration mySPIPortSettings = new SPI.Configuration(Pins.GPIO_NONE,
false, 0, 0, false, true, 50, SPI.SPI_module.SPI1);
SPI mySPIPort = new SPI(mySPIPortSettings);

9. Add an instance of our LCD driver

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 116

SPI_LCDDriver myLCDDriver = new SPI_LCDDriver();

10. With the class driver all we have to do is use SPI.Writes to send commands to the LCD.

In the run methods add the following:

//Turn backlight off
mySPIPort.Write(myLCDDriver.LCDBacklightOff());
Thread.Sleep(100);

//Clear display
mySPIPort.Write(myLCDDriver.LCDClear());
Thread.Sleep(6);

//Home cursor
mySPIPort.Write(myLCDDriver.LCDHomeCursor());
Thread.Sleep(6);

//Turn flashing cursor on
mySPIPort.Write(myLCDDriver.LCDBlinkblockCursorOn());
Thread.Sleep(6);

//Turn backlight on
mySPIPort.Write(myLCDDriver.LCDBacklightOn());
Thread.Sleep(10);

mySPIPort.Write(myLCDDriver.LCDLine1("LCD class"));
Thread.Sleep(6);

mySPIPort.Write(myLCDDriver.LCDLine2("driver is fun"));
Thread.Sleep(3000);

mySPIPort.Write(myLCDDriver.LCDShiftDisplayUp());
Thread.Sleep(6);

mySPIPort.Write(myLCDDriver.LCDLine2("Welcome to .NET MF"));
Thread.Sleep(6);

mySPIPort.Write(myLCDDriver.LCDShiftDisplayUp());
Thread.Sleep(6);

mySPIPort.Write(myLCDDriver.LCDLine2("sjjmicro.com"));
Thread.Sleep(6);

Note the liberal use of Thread.Sleep()’s after the write commands. This gives the LCD SPI
controller a chance to process the command and guards against overrunning the SPI data
buffer.

As you can see, writing to the SPI LCD is simpler when you can enumerate commands and
methods in a reusable class library. You don’t have to write code for the byte conversions
each time you want to write to the display.

11. Change the project properties so the application can be downloaded via the Serial port.

12. Build, deploy, and run the application on the iPac-9302. The applications should first
clear the display then scroll up the message.

6.5 Exercise 6.3: SPI Read - SPI Keypad Input
In the LCD driver, we added support for SPI port reads. The LCD2S-162 has support for a 4x4
keypad. In this exercise, we will perform SPI reads of the keypad buffer. You must complete the
prior two exercises before starting this one.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 117

Note: The LCD2S also supports a 4x3 keypad, and comes configured for that keypad from the
manufacturer. To use the 4x4 keypad you will have to change a jumper and program the SPI
controller on the LCD2S-162 for the different keyboard scan of 4x4.

Items needed for this lab

• Connection Wire –9, .025" square socket to .025 square socket – www.e-z-Hook.com
• LCD2S-162 with 2x 16 (2 line x16 Character) LCD or equivalent -

http://microcontrollershop.com/
• 4x4 keypad (HC-KP) - http://microcontrollershop.com/

Note: If you open the project that is supplied with the EDK, due to possible directory differences,
you will have to remove and re-add the SJJ_HardwareProvider resource.

6.5.1 Hardware setup

1. With the iPac-9302 powered off, wire up the SPI LCD to the iPac-9302 per section 6.3.2.
2. Next, connect the Row and Colum pins from the keypad to the Row and Colum pins on

the LCD2S-162 SPI controller.
3. Connect one more cable from the keypad shield to a ground pin on the LCD2S-162.

6.5.2 Creating the SPI Keypad application

1. Open Visual Studio or Visual C# Express Edition.
2. Using the SJJ_MF Console Application, create a new application called Keypad_SPI.
3. Click OK to create the project.
4. With the project selected in the Solution Explorer, from the menu, click on Project, and

then select Add Reference… from the drop down menu items.
5. Click on the Browse Tab, and locate the SJJ_Hardware provider.DLL
6. Click OK.
7. Click on the Browse Tab, and locate the SPI_LCD-Driver.DLL
8. Click OK.
9. Save the Project.
10. Add the following using declarations:

using Microsoft.SPOT.Hardware.SJJ;
using Microsoft.SPOT.Hardware.SJJ.SPI_LCD_Driver;

11. In the App class add the following to define and configure the SPI port and create an
instance of the LCD driver:

static SPI.Configuration mySPIPortSettings = new SPI.Configuration(Pins.GPIO_NONE,
false, 0, 0, false, true, 50, SPI.SPI_module.SPI1);
SPI mySPIPort = new SPI(mySPIPortSettings);
SPI_LCDDriver myLCDDriver = new SPI_LCDDriver();

12. In the Run method add the following code to setup the LCD display

//Clear display
mySPIPort.Write(myLCDDriver.LCDClear());
Thread.Sleep(6);

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 118

//Home cursor
mySPIPort.Write(myLCDDriver.LCDHomeCursor());
Thread.Sleep(6);

//Turn flashing cursor on
mySPIPort.Write(myLCDDriver.LCDBlinkblockCursorOn());
Thread.Sleep(6);

mySPIPort.Write(myLCDDriver.LCDLine1("Keypad Test"));
Thread.Sleep(1500);

//Clear display
mySPIPort.Write(myLCDDriver.LCDClear());
Thread.Sleep(6);

13. Since we are reading byte codes from the keypad we need to setup a byte array with the

first two members setting up the LCD to display text.

//Setup to write the keypad character to LCD
byte[] bWriteLCDChar = new byte[3];
bWriteLCDChar[0] = 0xF5;
bWriteLCDChar[1] = 0x80;

14. Finally, add the while-loop that reads the keypad buffer and writes the corresponding
value to the LCD display. We take advantage of the LCD driver’s support for the
KeyPadRead read method and the available KeyPadReadBuff, which will hold the data.

while (true)
{

mySPIPort.WriteRead(myLCDDriver.LCDKeyPadRead(), myLCDDriver.KeyPadReadBuf);
Thread.Sleep(6);

 if ((myLCDDriver.KeyPadReadBuf[3] >= 0x61) && (myLCDDriver.KeyPadReadBuf[3]
<= 0x70))
{

switch (myLCDDriver.KeyPadReadBuf[3])
//switch(SPIReadKeyPadByteBuf[0])
{

case 0x61:
{

bWriteLCDChar[2] = 0x31; //1
break;

}
case 0x62:
{

bWriteLCDChar[2] = 0x32; //2
break;

}
case 0x63:
{

bWriteLCDChar[2] = 0x33; //3
break;

}
case 0x64:
{

bWriteLCDChar[2] = 0xC4; //Enter
break;

}
case 0x65:
{

bWriteLCDChar[2] = 0x34; //4
break;

}

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 119

case 0x66:
{

bWriteLCDChar[2] = 0x35; //5
break;

}
case 0x67:
{

bWriteLCDChar[2] = 0x36; //6
break;

}
case 0x68:
{

bWriteLCDChar[2] = 0xC5; //Up arrow
break;

}
case 0x69:
{

bWriteLCDChar[2] = 0x37; //7
break;

}
case 0x6A:
{

bWriteLCDChar[2] = 0x38; //8
break;

}
case 0x6B:
{

bWriteLCDChar[2] = 0x39; //9
break;

}
case 0x6C:
{

bWriteLCDChar[2] = 0xC6; //Down arrow
break;

}
case 0x6D:
{

bWriteLCDChar[2] = 0xB7; //Cancel
break;

}
case 0x6E:
{

bWriteLCDChar[2] = 0x30; //0
break;

}
case 0x6F:
{

bWriteLCDChar[2] = 0xC8; //Left arrow
break;

}
case 0x70:
{

bWriteLCDChar[2] = 0xC7; //Right arrow
break;

}
default:
{

bWriteLCDChar[2] = 0x00;
break;

}
}

if (bWriteLCDChar[2] != 0x00)
{

mySPIPort.Write(bWriteLCDChar);
}

Thread.Sleep(100);

}

}

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 120

The case statement converts the keypad value that the scan controller assigns to each individual
key to a representative ASCII value the LCD can display. In a different application the Enter,
arrow keys, and cancel would perform different functions instead of displaying to the LCD, such
as branching off to perform different actions or cause the cursor to move.

15. Save the project.

6.5.3 Build, Deploy, and Test

1. Make sure the Null modem cable is connected to the iPac-9302 and the development
computer.

2. With the project selected in the Solution Explorer, from the menu, select Project and then
select Keypad_SPI Properties… from the submenu.

3. The project properties page appears, click on the Micro Framework tab.
4. Under Deployment, select Serial for the Transport and Com# as the Device. Where # is

the COM port number of the development computer.
5. Save the project
6. From the menu, select Build, and then select Build Keypad_SPI from the drop down

menu.
7. Make sure the iPac-9302 is powered on. You need to wait at least 20 seconds before

deploying an application. This gives TinyBooter a chance to turn control over to the CLR.
You can also monitor the boot-up of the iPac-9302 with MFDeploy and use the clearing of
the BootLoader Flag to shorten the boot time, but remember to disconnect MFDeploy
before you attempt to deploy an application from Visual Studio.

8. From the menu, select Build, and then select Deploy Keypad_SPI.
9. Power cycle the iPac-9302. The Keypad Test message will appear and then disappear.

You can now press keys on the keypad and watch each character appear on the LCD.

6.6 The SPI Summary
In this chapter, we learned about the SPI port and writing managed code applications for the SPI
port. SPI can support multiple devices on the SPI bus by using GPIOs and OR-gates to provide
chip selects for each device. Not having a specific protocol, each SPI device is free to implement
its own command and data interchange rules, but this frees the overhead of a protocol stack for
faster operation.

The exercises focused on the SPI LCD device. Gathering the technical information on the SPI
device is important to setup the SPI communication settings and understand the command
protocol to transmit to and receive from the SPI device. There are other popular SPI devices
available such as Analog-to-Digital converters, Real-Time controllers (RTC), GPIO expanders, 7-
segment LED drivers, various PIC controllers, etc. You can apply the same analysis techniques
to write a managed code application for any of these devices.

The exercise to create a class driver library for a device is important so you can re-use the code
and make your applications simpler to write and debug. This comes in handy when you have
multiple devices connected to the SPI bus, each having its own communications rules.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 121

7 Serial Ports – COM2 (RS-232/422/485)

Serial ports have been mainstays in computing since the 1960s. Serial ports have been used to
connect computers to devices like terminals, modems, printers, and other equipment. RS-232 is
the most popular serial port, but there are also other standards like RS-422, RS-423, RS-449 and
RS-485 that have had wide use. A fully populated iPac-9302 (EDKPlus) comes with the optional
second serial port (HDR5), which supports RS-232, RS-422, and RS-485. This chapter will cover
the following:

• An overview of RS-232, RS-422, and RS-485
• iPac-9302 COM2 hardware details
• .NET MF Serial Classes
• Basic RS-232 Communication Example

7.1 RS-232, RS-422, and RS-485 Overview

7.1.1 RS-232
RS-232 is one of the oldest and most popular serial communication standards. Personal
computers have used RS-232 ports since the first PCs were introduced. Speed is a limiting factor
for RS-232 topping out at 256K baud. Regardless of the limitation for today’s hyper-fast PCs,
many embedded systems use RS-232 and almost every microcontroller supports at least 1 RS-
232 port.

Signal-wise, RS-232 defines voltage levels and logic ones and zeroes. Unlike SPI, voltage levels
are within +/- 15 volts. A positive voltage is a logic zero and a negative voltage is logic one.
Ground is at zero volts and voltages near zero volts are not valid RS-232 logic levels. The voltage
levels themselves will be dependent on the power supply available. Some transmitter chips
include special charge pump circuitry to produce the RS-232 signal voltages from a single, low
voltage DC power source. These chips take the 0 and 1 logic levels and translate them to RS-232
signal levels. The iPac-9302 makes use of these transmitter chips so additional power supply
inputs to support the RS-232 voltage levels are not needed. Depending on the transmitter
drivers, the bit rate, and the capacitance of the cable, RS-232 cable lengths are typically a few
feet long: 25 to 50 feet (6 to 15 meters) are typical. Low capacitance RS-232 cables can extend
that range to up to 100 feet (30.5 meters).

7.1.2 RS-422
RS-422 offers a different signal scheme using balanced or differential signaling. The advantage of
RS-422 over RS-232 is the potential for higher baud rates and longer cable lengths. The cabling
defined by the standard is usually twisted pair with a maximum cable length of 3900 feet (1200
meters). RS-422 has been used to extend the transmission length between devices. RS-422 also
supports multi-drop, where one driver can signal up to 10 receivers.

7.1.3 RS-485
RS-485 is another differential signal standard that supports cable lengths up to 4000 feet
(1200m). Unlike RS-422, RS-485 supports multipoint serial communication, where up to 32
transceivers and 32 receivers can be connected to the same 2 wires. Communication is half-
duplex. Signaling is based on voltage transmission with signals ranging from -7 to +12V. RS-485
has no data protocol defined, so it is up to the developer to define the protocol. This means

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 122

careful designing must go into interfacing systems with RS-485 to avoid communication
collisions.

EGPIO9 must be sent low to perform a RS-485 transmit. Set EGPIO9 low before performing a
data transmit and then release high when finished. The SJJ_Hardware provider has a constant
for the EGPIO9 port.

7.2 iPac-9302 COM2 Port Hardware
In order to achieve the voltage signal requirements for these serial specifications, some external
line drivers are required to convert the digital signals from the CPU. The iPac-9302’s COM 2 port
includes the different line drivers to support RS-232, RS-422, and RS-485. Jumper JB2 is used to
select between the communications standards. Only one can be used at a time. The only
additional item software-wise is that EGPIO9 is used for RS-485 transmission. If you are going to
use RS-485, EGPIO9 must be set and left to logical True or 1 early in the application before any
RS-485 transmissions is made.

Fig 7.1 - HDR5 Signals

7.3 SerialPort Classes
The SerialPort class has been updated from earlier versions of .NET MF to be more in line with
.NET Framework 3.5 usage. There is a single class with overloaded constructors to allow ease of
configuration of the SerialPort parameters for a variety of usage situations. You can specify the
serial port name, the baud rate, the parity, the number of data bits, and the stop bits. The
overloading lets you specify only the port name up to all parameters including the stop bits, with
those parameters not be specified being set to default values.

Including the SerialPort class is a little confusing because of the naming of the .NET MF
assembly that contains the support library. The name of the assembly is
Microsoft.SPOT.Hardware.SerialPort. Which is a DLL: Microsoft.SPOT.Hardware.SerialPort.DLL.
This would lead one to expect the namespace for the SerialPort class to be
Microsoft.SPOT.Hardware, but it is not. The namespace for the SerialPort class is
System.IO.Ports, and in this namespace is the SerialPort class. Therefore, to include the
assembly library for the SerialPort class, you need to include the reference to the assembly,
Microsoft.SPOT.Hardware.SerialPort. Then to add the namespace reference to the code, you
must add the using statement: using System.IO.Ports.

The Serial class provides enumerations for the port names defined by Microsoft, but these only
support “COM1” through “COM3”. The EDK supports two real COM ports and 2 virtual COM
ports, so port names “COM1” through “COM4” are valid names, though “COM1” is currently
defaulted to the debug port and is unavailable for application access. Virtual ports “COM3” and
“COM4” provide access to the PWM and ADC hardware described later. Therefore, you should

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 123

use the port name enumerations provided by the SJJ Hardware Provider, SerialPorts. The same
is true with the baud rate enumerations, the EDK supports a wider range of baud rates than the
standard .NET MF enumerations provide for: 75, 150, 300, 600, 1200, 2400, 4800, 9600, 19200,
38400, 57600, & 115200 baud. Therefore, you should use the baud rate enumerations provided
by the SJJ Hardware Provider, BaudRates. For the port names you can use the enumerations
SerialPorts.COM2 through SerialPorts.COM4 (COM1 restricted to debug use); and for baud rates
you can use the enumerations BaudRates.Baud75 through BaudRates.Baud115200. The
enumerations provided by .NET MF for parity and stop bits may be used as is.

The SerialPort class provides the connection to the actual serial port. The basic methods are as
follows:

• Open – Open access to the COM port.
• Close – Close access to the COM port & clear the buffers.
• Read – Read data from the serial port.
• Write – Write data to the serial port.
• Dispose – Releases the unmanaged serial port resources.
• Flush – Forces any data in the send buffer to be sent out and clears the send buffer.
• DiscardInBuffer – Discards the data in the receive buffer.
• DiscardOutBuffer – Discards the data in the send buffer without sending it out.

The SerialPort class provides the following properties that one can get or set:

• BaudRate – Also can be set in the constructor (get or set).
• BytesToRead – Number of bytes in the read buffer (get).
• BytesToWrite – Number of bytes in the send buffer (get).
• DataBits – Also can be set in the constructor (get or set).
• IsOpen – Indicating if the port is opened or closed (get).
• Parity – Also can be set in the constructor (get or set).
• PortName – Must be set in the constructor (get).
• ReadTimeout – Number of milliseconds before a read time-out occurs (get or set).
• StopBits – Also can be set in the constructor (get or set).
• WriteTimeout – Number of milliseconds before a write time-out occurs (get or set).
• HandShake – Enable or disable RTS or XOn/XOff handshaking for transmission (get or

set).

Note: HandShake cannot be set in the constructor. If handshaking is desired, it must explicitly be
set by setting the HandShake property after the SerialPort object has been created.

In keeping with better alignment with .NET Framework 3.5, there is now support for data receive
events. This will be illustrated in the following exercise.

You still use the Serial port class to communicate using RS422 and RS485. Only the physical
layer changes when you change the jumper and EGPIO9 must be true for RS485. Of course, the
application needs to handle the data appropriately.

7.4 Exercise 7.1: Basic RS-232 Communication Application
The application will have the iPac-9302 communicate with SJJ_COMM (or other serial terminal
application) via the COM2 port. Anything sent from the PC will be echoed back by the application.

Note: If you open the project that is supplied with the EDK, due to possible directory differences,
you will have to remove and re-add the SJJ_HardwareProvider resource.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 124

7.4.1 Create the Serial_Test Application
1. Open Visual Studio or Visual C# Express Edition.
2. From the menu, select File->New->Project…
3. The New Project dialog appears; under Other Languages, click on the Visual C#

projects on the left side of the New Project dialog box. You should see a new template
under My Templates called SJJ_MF Console Application.

4. Click on SJJ_MF Console Application.
5. In the Name at the bottom, type in Serial_Test.
6. Click OK to create the project. When you open Program.cs you will notice that the basic

structure of the application is already setup for you. You only need to add the hardware
provider for your platform.

7. From the menu, click on Project, and then select Add Reference… from the drop down
menu items.

8. Click on the Browse Tab, and locate the SJJ_Hardware provider.DLL.
9. Click OK.
10. From the menu, click on Project, and then select Add Reference… from the drop down

menu items.
11. Click on the .NET Tbo, and add the Microsoft.SPOT.Hardware.SerialPort reference.
12. Open Program.cs.
13. Add the following to the using list:

using Microsoft.SPOT.Hardware.SJJ;
using System.IO.Ports;
using System.Text;

14. Save the project

7.4.2 Add the code to Create an instance of the serial port and Echo Characters

1. The first thing that needs to be done is to create a SerialPort object and use the
constructor to configure the port settings appropriately. The SerialPort object will be for
“COM2”, the baud rate will be 115200, no parity, 8 data bits, and 1 stop bit. In public
class App before RUN() add the following:

public SerialPort COM2Port = new SerialPort(SerialPorts.COM2,
(int)BaudRates.Baud115200, Parity.None, 8);

The above line is very different from earlier versions of .NET MF. A SerialPort object is
created with the physical port, baud rate, parity, etc. already set in one operation.

Note: we did not explicitly set the StopBits in the constructor, because the default is 1
and that’s what we want for this configuration. Also, we are not using flow control, so we
will not have to explicitly set the HandShake property as it defaults to none.

2. Next, we will add a string to send to the output, define a byte output array, and add the

GreenLED GPIO object. Since the serial port class supports data receive events, we will
have the application flash the GreenLED while it waits for data to come in.

public static String sOutput = "Outputting to COM2\n";
public byte[] boutArray = new byte[sOutput.Length];
public OutputPort myGreenLED = new OutputPort(Pins.GREEN_LED, false);

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 125

3. Now let’s enter the code for main body of the application. First, we need to set up one
more serial port property and then open the COM port. In the Run() method, add the
following code:

COM2Port.ReadTimeout = 10;
COM2Port.Open();

4. Next, we want to create the DataReceive event handler. The event must be created after

the opening of the COM port. The setup is like a GPIO event handler. Start typing the
following:

COM2Port.DataReceived +=

Intellisense will create a pop-up suggestion. Hit TAB key twice to create the
COM2Port_DataReceived handler.

5. Next, what we want to do is send out our sOutput string. The string has to first be

encoding using UTF8Encoding. Once completed, we need to convert each byte into our
byte array, and then we can send it out the COM port and toggle the Green LED. Enter
the following:

System.Text.UTF8Encoding Encoding = new System.Text.UTF8Encoding();
boutArray = Encoding.GetBytes(sOutput);

COM2Port.Write(boutArray, 0, boutArray.Length);
Thread.Sleep(500);

//Stay in loop to continue to receive data
while (true)
{
 Thread.Sleep(500);
 myGreenLED.Write(true);

 Thread.Sleep(500);
 myGreenLED.Write(false);
}

6. Finally, we need to add the code to the COM2Port_DataReceived handler. The code will

simply read the data from the serial buffer and echo the data back out the COM port. In
the COM2Port_DataReceived handler add the following:

int incount;
int iBytesToRead;

if ((iBytesToRead = COM2Port.BytesToRead) > 0)
{
 byte[] binArray = new byte[iBytesToRead];

 incount = COM2Port.Read(binArray, 0, iBytesToRead);
 COM2Port.Write(binArray, 0, incount);

}

When the data event occurs, the amount of data to read is not fixed. Data can continue to fill the
buffer. An overflow of the binArray could occur if you use separate reads of
COM2Port.BytesToRead to setup the binary array size and then set the number of bytes to read
from the COM port. The iBytesToRead variable insures that the size of the input array and the
number of bytes read into it, are always the same.

7.4.3 Configure Project Properties, Build, and Deploy the application

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 126

1. Make sure the Null modem cable is connected to the debug serial port of the iPac-9302
and the development computer.

2. With the Serial_Test project selected in the Solution Explorer, from the menu, select
Project and then select Serial_Test Properties… from the submenu.

3. The project properties page appears, click on the Micro Framework on the left tab.
4. Under Deployment, select Serial for the Transport and Com# as the Device. Where # is

the COM port number of the development computer.
5. Save the project
6. From the menu, select Build, and then select Build Serial_Test from the drop down

menu. There should be no build errors
7. Make sure the iPac-9302 is powered on. You need to wait at least 20 seconds before

deploying an application. This gives TinyBooter a chance to turn control over to the CLR.
You can also monitor the boot-up of the iPac-9302 with MFDeploy and use the clearing of
the BootLoader Flag to shorten the boot time, but remember to disconnect MFDeploy
before you attempt to deploy an application from Visual Studio.

8. From the menu, select Build, and then select Deploy Serial_Test.
9. The output window should show a successful build and download. Power down the

board. If you only have one NULL modem cable then unplug the cable from the debug
serial port and connect it to the COM2 port of the iPac-9302.

10. Start SJJ_COMM Lite or the serial terminal software of your choice. Setup the terminal
application parameters for a baud rate of 115200. SJJ_COMM Lite is already set for
115200. If you are using some other terminal software set the COM port parameters to
115200 baud, 8 data bits, no parity, 1 stop bit, no flow control, and no local echo.

11. Reconnect power to the iPac-9302. After the system boots up, you should see the sign
on string on the display. Type something to send to the platform, and the data should be
echoed back by the program. Observe that the green LED is flashing when no data is
being handled by COM2.

Fig 7.2 - SJJ_COMM Lite Interacting with the Serial_Text Applicaiton

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 127

7.5 Summary: Serial Ports and More Serial Ports
RS-232 serial port communication is the most widely known serial interface since the first PCs. It
is still used widely in embedded systems. The iPac-9302 allows for serial port communication
using one of three selectable physical interface standards: RS-232, RS-422, and RS-485.

If you need more serial ports, a SPI-to-RS232 transceiver is an ideal solution. We just so happen
to have a white paper posted to our website that describes this implementation.

http://sjjmicro.com/Docs/Articles_NETMF/SPI_Serial_NET_Micro%20Framework_v1.3.pdf

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 128

8 Pulse Width Modulation (PWM)

Pulse-width modulation is a simple, yet powerful technique for controlling an analog signal with a
digital device, like a microprocessor. The simplicity is in the control electronics that switch an
analog signal on or off. When an analog signal is switched from off to on and then back to off, a
pulse is generated. When the analog signal is switched on and off repeatedly, a pulse train is
generated. By controlling the period of time from the start of one pulse to the start of the next
pulse in a pulse train, the modulation frequency can be established and controlled. By controlling
the period of time that each pulse of a pulse train is on and the period of time that each pulse of a
pulse train is off the duty cycle can be established and controlled. Pulse-width modulation is the
creation and control of a pulse train’s frequency and duty cycle. Pulse-width modulation can be
used to control power to a device or to transmit information. Fig 8.1 shows some example pulse
trains with different fixed and varying duty cycles.

Fig 8.1 PWM Duty Cycles

8.1 Pulse-Width Modulation Overview

The iPac-9302 has 3 PWM’s, but they are not totally independent. PWM1 (See Table D.2 -
Analog (HDR2), Pin 20) is the internal PWM on the Cirrus EP9302 SOC. PLD_PWM2 (See
Table D.2 - Analog (HDR2), Pin 15) and PLD_PWM3 (See Table D.2 - Analog (HDR2), Pin16)
are two lower speed PWM controllers that are on the iPac-9302’s CPLD. The 2 CPLD PWM
controllers use the output from PWM1 as their reference frequency.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 129

Fig 8.2 CPU PWM Provides the Reference Clock for PLD PWMS

8.1.1 Internal SOC PWM Controller
Depending on how PWM1 is programmed, it can produce a signal output from a continuous level
(100% duty cycle), to a pulse train that can approach a 0% duty cycle. The output frequency of
PWM1 is derived from an internal reference frequency of 14,745,600 Hz and is divided using a
16-bit counter to produce the output frequency. Another 16-bit counter is used to determine the
duty cycle of the output, and one can also invert the output. The output target frequency is
determined by the Terminal Count register which can be calculated as follows:

Terminal Count Register = ቀோ௘௙௘௥௘௡௖௘ ி௥௘௤௨௘௡௖௬
்௔௥௚௘௧ ி௥௘௤௨௘௡௖௬

ቁ െ 1

The output duty cycle is determined by the Duty Cycle register which can be calculated as
follows:

Duty Cycle Register = ቀ஽௨௧௬ ஼௬௖௟௘ %
ଵ଴଴

כ ሺܶ݁ݎ݁ݐݏܴ݅݃݁ ݐ݊ݑ݋ܥ ݈ܽ݊݅݉ݎ ൅ 1ሻቁ െ 1

PWM1 can be set to an output frequency from 225 Hz to 14,745,600 Hz with a duty cycle from
nearly 0% to 100%.

There is also and Invert Register. This changes the steady state of the PWM1 output when the
PWM is disabled and changes the phase of the switching of the output. The default state of
PWM1 is for the output to be at logical 0 when the PWM is disabled. When programmed and
enabled, the output will switch from logical 0 to logical 1 and remain at logical 1 for the duty cycle
percentage that was programmed. Then the output will be switched to logical 0 and remain there
for the duration of the remainder of the pulse train period determined by the frequency that was
programmed. If the Invert Register is set to the invert state, the steady state of PWM1 will be
logical 1 when the PWM is disabled. When PWM1 is programmed and enabled, it will switch
from logical 1 to logical 0 and remain at logical 0 for the duty cycle percentage that was
programmed. Then the output will be switched to logical 1 and remain there for the duration of
the remainder of the pulse train period determined by the frequency that was programmed.
When PWM1 is disabled, the output will return to the steady state condition determined by the
Invert Register until it is programmed and enabled, again.

8.1.2 CPLD PWM Controllers

The CPLD PWM controllers are lower speed, lower resolution controllers that are duty cycle-only
controllers. Each of these controllers has an 8-bit counter that always provides an output
frequency that is equal to the input reference frequency—provided by PWM1—divided by 256.
Typically one would either use PWM1 for a single PWM controller application or the two CPLD

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 130

PWMs for a two-controller application. When the CPLD PWM controllers are used, one typically
sets PWM1 to the desired reference frequency with a 50% duty cycle.

Each CPLD PWM controller uses the same reference frequency provided by PWM1, but each
controller has its own 8-bit counter for independent duty cycle control. The duty cycle for either of
the controllers can be calculated as follows:

Duty Cycle Register = (஽௨௧௬ ஼௬௖௟௘ %
ଵ଴଴

ሻ כ 256

Since the largest value for the 8-bit Duty Cycle Register is 255, this means that the highest duty
cycle percentage is 99.6%. To produce a 100% duty cycle, the Invert Control needs to be used.

As with PWM1, PLD_PWM2 and PLD_PWM3 each have Invert Control bits that can reverse the
steady state output level and the phase of the switching.

8.2 PWM Programmatic Access

The .NET Micro Framework CLR does not directly support a PWM API. To provide programmatic
access to the PWM controllers, we have chosen to implement a virtual COM port interface.
COM3 has been configured to manage the PWM controllers. The way this works is that you must
open the COM3 serial port as you would an actual serial port. Then you write a series of bytes
that are interpreted at the hardware driver level as specific commands for the PWM controllers. If
data is requested to be returned, then the write is followed by a read to retrieve the requested
data.

It is certainly possible for you to manage the PWM’s by directly using the virtual COM port and
the command set that the PWM driver implements, but we have further simplified this by
providing a managed code PWM driver that encapsulates all the COM port manipulations and the
command definitions, and provides a more straightforward API that is more intuitive for controlling
the PWM’s. The managed code driver is call SJJ_PWM_Driver and is provided as a DLL that can
be included as a reference when creating your managed code application.

For those of you who want to get down and dirty, there is a more detail of the inner workings of
the PWM driver in Appendix B.

8.2.1 PWM Managed Code Driver API

The SJJ_PWM_Driver provides a public class called SJJ_PWM_Driver in the
Microsoft.SPOT.Hardware.SJJ namespace. This class exposes the following basic driver
methods to open, configure, and control the PWM controllers:

public SerialPort PWM_Open();

This method opens the virtual COM port for the PWM controllers. It returns the SerialPort object
which must be stored and passed to other control methods.

public SJJ_PWM_Driver.PWM_Status PWM_SetFreq(uint uiPWMFreq, SerialPort
myPwm);

This method accepts the desired integer frequency and the SerialPort object. It calculates the
appropriate register value for PWM1 Terminal Count Register and writes that value to the
Terminal Count register. Only PWM1 has frequency control, so if you are using CPLD PWM’s

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 131

make sure that the PWM1 frequency that you select is 256X the desired CPLD PWM frequency.
If the method is successful, it will return a status of eStatusWriteSuccess.

public SJJ_PWM_Driver.PWM_Status
PWM_SetDutyCycle(SJJ_PWM_Driver.PWM_Channel ePWMChannel, int
iDutyCycPerCent, SerialPort myPwm);

This method accepts the PWM channel number, which identifies which PWM controller you are
configuring, the desired duty cycle as an integer percent, and the SerialPort object. It calculates
the appropriate duty cycle register value for the particular PWM controller specified and writes it
to that controller’s duty cycle register. If the method is successful, it will return a status of
eStatusWriteSuccess.

public SJJ_PWM_Driver.PWM_Status
PWM_SetInvert(SJJ_PWM_Driver.PWM_Channel ePWMChannel, bool bInvert,
SerialPort myPwm);

This method accepts the PWM channel number, which identifies which PWM controller you are
configuring, a Boolean for the desired invert state, and the SerialPort object. It sets the
appropriate PWM controller’s invert state based on the Boolean state: true = invert on; false =
invert off. . If the method is successful, it will return a status of eStatusWriteSuccess.

public SJJ_PWM_Driver.PWM_Status PWM_On(SerialPort myPwm);

This method accepts the SerialPort object and turns on the PWM1 controller. The CPLD PWM
controllers do not have independent on/off control. If the method is successful, it will return a
status of eStatusWriteSuccess.

public SJJ_PWM_Driver.PWM_Status PWM_Off(SerialPort myPwm);

This method accepts the SerialPort object and turns off the PWM1 controller. The CPLD PWM
controllers do not have independent on/off control. If the method is successful, it will return a
status of eStatusWriteSuccess.

The driver also provides some more advanced driver methods for reading the PWM1 registers
and general PWM status:

public ushort PWM_ReadTerminalCount(SerialPort myPwm);

This method accepts the SerialPort object and returns the 16-bit contents of the PWM1 Terminal
Count register. Only the PWM1’s registers are readable.

public ushort PWM_ReadDutyCyle(SerialPort myPwm);

This method accepts the SerialPort object and returns the 16-bit contents of the PWM1 Duty
Cycle register. Only the PWM1’s registers are readable.

public SJJ_PWM_Driver.PWM_Status PWM_ReadStatus(SerialPort myPwm);

This method accepts the SerialPort object and returns the virtual COM port driver status.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 132

The driver class also provides a number of enumerated types to manage the status return and
identify the particular PWM controller:

public enum PWM_Status
{
 eStatusInit = 0,
 eStatusWriteSuccess = 1,
 eStatusReadSuccess = 2,
 eStatusReadFail = 3,
 eStatusSynchError = 4,
 eStatusCommandLengthError = 5,
 eStatusSynchSuccess = 6,
 eStatusSetReadSuccess = 7,
 eStatusSetReadFail = 8,
 eStatusOpenSuccess = 9,
 eStatusOpenFail = 10,
 eStatusCloseSuccess = 11,
 eStatusCloseFail = 12,
 eStatusPWMComHandleError = 13,
 eNumStatus = 14,
}

public enum PWM_Channel
{
 ePWM1 = 0,
 ePWM2_CPLD = 1,
 ePWM3_CPLD = 2,
}

Using these methods, and enumerated constants, it is a very simple task to open, configure, start,
and stop the PWM controllers.

8.3 Exercise 8.1: Basic PWM Control Application

This application will configure the iPac-9302’s PWM controllers using PWM1 as a 500K Hz clock
source for the CPLD PWM’s and then will set up PLD_PWM2 for a duty cycle of 25% and
PLD_PWM3 for a duty cycle of 75% initially. Then we will swap the duty cycle settings between
the two CPLD PWMs back and forth in a loop. We will also flash the green LED on and off as we
iterate through the loop as a healthy status indicator.

Note: If you open the project that is supplied with the EDK, due to possible directory differences,
you will have to remove and re-add the SJJ_HardwareProvider and SJJ_PWM_Driver resources.

8.3.1 Create the PWM_Test Application
1. Open Visual Studio or Visual C# Express Edition.
2. From the menu, select File→New→Project…
3. The New Project dialog appears; under Other Languages, click on the Visual C#

projects on the left side of the New Project dialog box. You should see the SJJ template
under My Templates called SJJ_MF Console Application.

4. Click on SJJ_MF Console Application.
5. In the Name: at the bottom of the New Project dialog, type in PWM_Test

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 133

6. Click OK to create the project. Open Program.cs and, again, you will see the basic
structure of the application is setup for you. You only need to add the hardware provider
for your platform and the PWM managed code driver.

7. From the menu, click on Project, and then select Add Reference… from the drop down
menu items.

8. Click on the Browse Tab, and locate the SJJ_Hardware provider.DLL.
9. Click OK.
10. From the menu, again, click on Project, and then select Add Reference… from the drop

down menu items.
11. Click on the Browse Tab, and locate the SJJ_PWM_Driver.dll.
12. Click OK.
13. Finally, click on Project, and then select Add Reference… from the drop down menu

items. In the .NET Tab, add the Microsoft.SPOT.Hardware.SerialPort reference.
14. Open Program.cs.
15. Add the following to the using list:

using Microsoft.SPOT.Hardware.SJJ;
using Microsoft.SPOT.Hardware.SJJ.SJJ_PWM_Driver;
using System.IO.Ports;

16. Save the project

8.3.2 Add the code to create the PWM driver object and green LED GPIO object

1. First, let’s create the PWM driver object and the green LED object. In public class App
before RUN(), add the following:

// Create PWM driver object
SJJ_PWM_Driver myPWMDriver = new SJJ_PWM_Driver();

// Create green LED object
OutputPort myGreenLED;

2. Now, let’s create the PWM driver instance and the green LED GPIO instance. In the

public void Run() method add the following:

// Open the PWM device
SerialPort myPwmHandle = myPWMDriver.PWM_Open();

// Create green LED object for visual feedback and turn it off to start
myGreenLED = new OutputPort(Pins.GREEN_LED, false);

3. We need a status variable to check the result of the driver methods, and we need a

Boolean variable to keep track of the duty cycle state as we iterate through the work loop.
So, add the following:

SJJ_PWM_Driver.PWM_Status eStatusPWM;
bool bToggle = false;

4. Before we add our work loop, let’s make sure the PWM1 is off and configured for a

frequency of 500 K Hz and a duty cycle of 50% as the reference clock for the CPLD
PWM’s. To do this, add the following:

// Turn PWM1 off
eStatusPWM = myPWMDriver.PWM_Off(myPwmHandle);
if (eStatusPWM != SJJ_PWM_Driver.PWM_Status.eStatusWriteSuccess)
{
 Debug.Print("PWM_Off failed: " + eStatusPWM.ToString());
}

// Set PWM1 frequency to 500K Hz
eStatusPWM = myPWMDriver.PWM_SetFreq(500000, myPwmHandle);

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 134

if (eStatusPWM != SJJ_PWM_Driver.PWM_Status.eStatusWriteSuccess)
{
 Debug.Print("PWM_SetFreq failed: " + eStatusPWM.ToString());
}

// Set PWM1 duty cycle to 50%
eStatusPWM = myPWMDriver.PWM_SetDutyCycle(SJJ_PWM_Driver.PWM_Channel.ePWM1, 50,
myPwmHandle);
if (eStatusPWM != SJJ_PWM_Driver.PWM_Status.eStatusWriteSuccess)
{
 Debug.Print("PWM_SetDutyCycle ePWM1 failed: " + eStatusPWM.ToString());
}

5. Now, let’s set the initial CPLD PWM duty cycles to be 25% for CPLD PWM2 and 75% for

CPLD PWM3. To do this, add the following:

// Set CPLD PWM2 duty cycle to 25%
eStatusPWM = myPWMDriver.PWM_SetDutyCycle(SJJ_PWM_Driver.PWM_Channel.ePWM2_CPLD,
25, myPwmHandle);
if (eStatusPWM != SJJ_PWM_Driver.PWM_Status.eStatusWriteSuccess)
{
 Debug.Print("PWM_SetDutyCycle ePWM2_CPLD failed: " + eStatusPWM.ToString());
}

// Set CPLD PWM3 duty cycle to 75%
eStatusPWM = myPWMDriver.PWM_SetDutyCycle(SJJ_PWM_Driver.PWM_Channel.ePWM3_CPLD,
75, myPwmHandle);
if (eStatusPWM != SJJ_PWM_Driver.PWM_Status.eStatusWriteSuccess)
{
 Debug.Print("PWM_SetDutyCycle ePWM3_CPLD failed: " + eStatusPWM.ToString());
}

6. The final thing to do, before we enter the work loop, is to turn the PWMs on, light the

green LED for status, and then delay so we can observe the initial results of our setup.
To accomplish this, add the following:

// Turn on PWM
eStatusPWM = myPWMDriver.PWM_On(myPwmHandle);
if (eStatusPWM != SJJ_PWM_Driver.PWM_Status.eStatusWriteSuccess)
{
 Debug.Print("PWM_On failed: " + eStatusPWM.ToString());
}

// Turn on green LED
myGreenLED.Write(true);

Thread.Sleep(500);

7. Now, we are ready to add our work loop, so add the following:

// Loop and toggle CPLD duty cycles
while (true)
{
}

8. We will now add code to the work loop that looks at the toggle Boolean variable and

depending on its state will change the CPLD duty cycles and then toggle the state of the
Boolean. As a healthy runtime status indicator, we will also toggle the state of the green
LED each time we toggle the duty cycles. Add the following to the work loop:

if (bToggle)
{
 bToggle = false;

 // Set CPLD PWM2 duty cycle to 75%
 eStatusPWM =
myPWMDriver.PWM_SetDutyCycle(SJJ_PWM_Driver.PWM_Channel.ePWM2_CPLD, 75,
myPwmHandle);

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 135

 if (eStatusPWM != SJJ_PWM_Driver.PWM_Status.eStatusWriteSuccess)
 {
 Debug.Print("PWM_SetDutyCycle ePWM2_CPLD failed: " +
eStatusPWM.ToString());
 }

 // Set CPLD PWM3 duty cycle to 25%
 eStatusPWM =
myPWMDriver.PWM_SetDutyCycle(SJJ_PWM_Driver.PWM_Channel.ePWM3_CPLD, 25,
myPwmHandle);
 if (eStatusPWM != SJJ_PWM_Driver.PWM_Status.eStatusWriteSuccess)
 {
 Debug.Print("PWM_SetDutyCycle ePWM3_CPLD failed: " +
eStatusPWM.ToString());
 }

 // Turn off green LED
 myGreenLED.Write(false);

}
else
{
 bToggle = true;

 // Set CPLD PWM2 duty cycle to 25%
 eStatusPWM =
myPWMDriver.PWM_SetDutyCycle(SJJ_PWM_Driver.PWM_Channel.ePWM2_CPLD, 25,
myPwmHandle);
 if (eStatusPWM != SJJ_PWM_Driver.PWM_Status.eStatusWriteSuccess)
 {
 Debug.Print("PWM_SetDutyCycle ePWM2_CPLD failed: " +
eStatusPWM.ToString());
 }

 // Set CPLD PWM3 duty cycle to 75%
 eStatusPWM =
myPWMDriver.PWM_SetDutyCycle(SJJ_PWM_Driver.PWM_Channel.ePWM3_CPLD, 75,
myPwmHandle);
 if (eStatusPWM != SJJ_PWM_Driver.PWM_Status.eStatusWriteSuccess)
 {
 Debug.Print("PWM_SetDutyCycle ePWM3_CPLD failed: " +
eStatusPWM.ToString());
 }

 // Turn on green LED
 myGreenLED.Write(true);

}

Thread.Sleep(500);

We added and arbitrary delay at the bottom of the loop to give us some time to observe the duty
cycle changes. It should also be noted, that we do not turn off the PWMs before we change the
duty cycles and then turn them back on. One would do this if you were concerned about pulse
width jitter while the duty cycle registers are being written. In this simple case, we do not care
about transition jitter.

8.3.3 Configure Project Properties, Build, and Deploy the application

1. Make sure the Null modem cable is connected to the debug serial port of the iPac-9302
and the development computer.

2. With the PWM_Test project selected in the Solution Explorer, from the menu, select
Project and then select PWM_Test Properties… from the submenu.

3. The project properties page appears, click on the Micro Framework on the left tab.
4. Under Deployment, select Serial for the Transport and Com# as the Device. Where # is

the COM port number of the development computer.
5. Save the project

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 136

6. From the menu, select Build, and then select Build PWM_Test from the drop down
menu. There should be no build errors

7. Make sure the iPac-9302 is powered on. You need to wait at least 20 seconds before
deploying an application. This gives TinyBooter a chance to turn control over to the CLR.
You can also monitor the boot-up of the iPac-9302 with MFDeploy and use the clearing of
the BootLoader Flag to shorten the boot time, but remember to disconnect MFDeploy
before you attempt to deploy an application from Visual Studio.

8. From the menu, select Build, and then select Deploy PWM_Test.
The output window should show a successful download. Power down the board.

8.3.4 Running PWM_Test

Repower the iPac-9302 and when the application runs, you should see the green LED flashing,
showing that the programming is running successfully. If you attach a scope to the PWM outputs,
you should see the following conditions alternate with the flashing of the green LED (orange
trace1 is PWM1, cyan trace 2 is CPLD_PWM2, and magenta trace 3 is CPLD_PWM3):

Fig 8.3 CPLD PWM2 25% Duty Cycle; CPLD PWM3 75% Duty Cycle

Note that the frequency of the CPLD PWMs is 2K Hz as expected; 500K Hz / 256.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 137

Fig 8.4 CPLD PWM2 75% Duty Cycle; CPLD PWM3 25% Duty Cycle

If we increase the sweep speed on the scope we can capture PWM1, we can verify that it is
running at about the 500K Hz that we set with a 50% duty cycle.

Fig 8.5 PWM1 Reference Frequency with 50% Duty Cycle

8.4 SUMMARY: Pulse Width Modulation (PWM)

The iPac-9302 has 3 PWM’s. PWM1 is the internal PWM on the Cirrus EP9302 SOC and the
clock source for the two CPLD PWMs. PLD_PWM2 and PLD_PWM3 are two lower speed PWM
controllers that are on the iPac-9302’s CPLD. The PWMs can be set to duty cycles ranging from
nearly 0% to 100% with PWM1 having 1-bit duty cycle resolution and PWM2 and PWM3 having
8-bit resolution. The output frequency of the CPLD PWMs is the PWM1 frequency divided by
256. All PWMs also have an invert function that reverses the off state and the phase of output
switching.

The .NET Micro Framework CLR does not directly support a PWM API. To provide programmatic
access to the PWM controllers, a virtual COM port interface has been implemented. COM3 has
been configured to manage the PWM controllers. A managed code PWM driver that encapsulates
all the COM port manipulations and the command definitions, and provides a more
straightforward API that is more intuitive for controlling the PWMs, has been provided. The
managed code driver, SJJ_PWM_Driver, is provided as a DLL that can be included as a
reference when creating your managed code application. The inner workings of the PWM driver
are discussed in Appendix B.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 138

9 Analog-To-Digital Converter (ADC)

An analog-to-digital converter, or ADC, is an electronic device that is used to convert an analog
voltage signal, sampled at a particular instance, into a digital value. An analog voltage signal
may assume any value within a continuous range, as opposed to a digital voltage signal, which
will be one of two values: logical 0 or logical 1. Most of the input that we sense as humans is in
analog form, i.e. sound, light, pressure, or temperature to name a few. Analog voltage signals
that most electronic devices processes are typically a voltage representation of the input sources
just mentioned. Analog signals of light, sound, pressure, temperature, etc. are converted to a
corresponding analog voltage using a transducer. In order to process these analog voltage
signals with digital electronics, like microprocessors, it is necessary to convert the time-varying
analog voltage from a transducer or other source into a time-varying series of digital
measurements. The ADC accomplishes just that. The ADC periodically samples one or more
analog signals and converts each sample of each signal into a digitally coded representation of
each analog signal at the time it was sampled. The digital coding format and the range of digital
values will vary depending on the design of the ADC.

Typical encoding schemes are single-ended binary with the results being a positive binary value
that is linearly related to the analog signal and ranging from some minimum value to some
maximum value or bipolar binary with the results being a signed binary value that is linearly
related to the analog signal and ranging from some maximum negative value to some maximum
positive value. ADC digital encoding is by no means limited to these basic examples. BCD
encoding, Gray code, or other digital encoding schemes can be used and the digital conversion
does not have to be linear. Logarithmic, parabolic, or other non-linear conversion schemes can
be implemented as well.

A typical ADC transfer function is shown in Fig 9.1.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 139

Fig 9.1 ADC Typical Transfer Function

9.1 Analog-To-Digital Converter Overview

The iPac-9302 has a single, multi-function, multi-input ADC controller which is contained in the
Cirrus EP9302 SOC. The EP9302’s ADC can be configured to interface to a variety of different
types of touch screens or it can be configured as a 6-channel general ADC, which is how the
iPac-9302 is configured. There is no support for touch screen with the iPac-9302. There are 5
channels available to monitor 5 independent analog signals, each with a voltage range of from 0
Volts to + 3.3 Volts (see Table D.2 - Analog (HDR2), ADC0, Pin1; ADC1, Pin 2, ADC2, Pin 3;
ADC3, Pin4; ADC4, Pin5). The 6th channel is connected to battery voltage, VBat. The digital
conversions are presented as 16-bit signed integers.

As we mentioned in the general ADC description, when an ADC is connected to an analog signal
and turned on, it will takes repetitive samples of the analog signal, convert each sample to a
digital value and present them to the microprocessor for processing. The iPac-9302’s ADC can
sample at 2 rates, which are derived from an internal clock and a 2-state divider. The ADC can
sample at either 3,750 samples-per-second or 925 samples-per-second. For best system
response the higher sample rate is recommended.

The sample transfer function in Fig 9.1 is, in fact, the iPac-9302’s transfer function. The
conversion count ranges from -25,000 counts for 0 Volts applied to the sampling channel, to 0
counts for

ଷ.ଷ
ଶ
 Volts applied to the sampling channel, and to a maximum of +25,000 counts for 3.3

Volts applied to the sampling channel with a linear response. There will be some variation from
chip-to-chip and depending on ambient temperature, so for the most accurate conversion results,

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 140

you should determine a method in your application for calibrating the device. There is also a
settle-time for the ADC when the input is switched from one channel to another and is dependent
on the sample rate. You do not have to worry about this; because when you select the desired
sample rate, the driver automatically calculates the appropriate settle time and inserts the
required delay when switching channels.

9.2 ADC Programmatic Access

The .NET Micro Framework CLR does not directly support an ADC API. To provide
programmatic access to the ADC controller, a virtual COM port interface has been implemented.
COM4 has been configured to manage the ADC controller. The way this works, is that you must
open the COM4 serial port as you would an actual serial port. Then you write a series of bytes
that are interpreted at the hardware driver level as specific commands for the ADC controller. If
data is requested to be returned, then the write is followed by a read to retrieve the requested
data.

It is certainly possible for you to manage the ADC by directly using the virtual COM port and the
command set that the ADC driver implements, but we have further simplified this by providing a
managed code ADC driver that encapsulates all the COM port manipulations and the command
definitions, and provides a more straightforward API that is more intuitive for controlling the ADC.
The managed code driver is call SJJ_ADC_Driver and is provided as a DLL that can be included
as a reference when creating your managed code application.

For those of you who want to get down and dirty, there is a more detailed description of the inner
workings of the ADC driver in Appendix B.2.

9.2.1 ADC Managed Code Driver API

The SJJ_ADC_Driver provides a public class called SJJ_ADC_Driver in the
Microsoft.SPOT.Hardware.SJJ namespace. This class exposes the following basic driver
methods to open, configure, and control the ADC controllers:

public SerialPort ADC_Open();

This method opens the virtual COM port for the ADC controller. It returns the SerialPort object
which must be stored and passed to other control methods.

public SJJ_ADC_Driver.ADC_Status
ADC_SetClkDiv(SJJ_ADC_Driver.ADC_ClkDiv eADCDivide, SerialPort myAdc);

This method accepts the clock divider enumeration and the SerialPort object. The clock divider
will determine which of the sample rates the ADC will use as it make repetitive samples. If the
method is successful, it will return a status of eStatusWriteSuccess.

public SJJ_ADC_Driver.ADC_Status
ADC_SetChannel(SJJ_ADC_Driver.ADC_Source eAnalogChannel, SerialPort
myAdc);

This method accepts the analog channel number and the SerialPort object. It sets the ADC
controller to monitor the selected analog input and delays the appropriate settle time before
returning. If the method is successful, it will return a status of eStatusWriteSuccess.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 141

public SJJ_ADC_Driver.ADC_Status ADC_On(SerialPort myAdc);

This method accepts the SerialPort object and turns on the ADC controller. If the method is
successful, it will return a status of eStatusWriteSuccess.

public SJJ_ADC_Driver.ADC_Status ADC_Off(SerialPort myAdc);

This method accepts the SerialPort object and turns off the ADC controller. If the method is
successful, it will return a status of eStatusWriteSuccess.

public int ADC_Read(SerialPort myAdc);

This method accepts the SerialPort object and causes the ADC to sample the selected analog
input channel. It returns the converted value as a signed integer.

public SJJ_ADC_Driver.ADC_Status ADC_ReadStatus(SerialPort myAdc);

This method accepts the SerialPort object and returns the virtual COM port driver status.

The driver class also provides a number of enumerated types to manage the status return and
identify the particular ADC channel:

public enum ADC_Source
{
 eAnalogChannel0 = 0,
 eAnalogChannel1 = 1,
 eAnalogChannel2 = 2,
 eAnalogChannel3 = 3,
 eAnalogChannel4 = 4,
 eBatteryVoltage = 5,
}

public enum ADC_ClkDiv
{
 eADCDivide4 = 0,
 eADCDivide16 = 1,
}

public enum ADC_Status
{
 eStatusInit = 0,
 eStatusWriteSuccess = 1,
 eStatusReadSuccess = 2,
 eStatusReadFail = 3,
 eStatusSynchError = 4,
 eStatusCommandLengthError = 5,
 eStatusSynchSuccess = 6,
 eStatusSetReadSuccess = 7,
 eStatusSetReadFail = 8,
 eStatusADCSourceError = 9,
 eStatusADCComHandleError = 10,
}

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 142

Using these methods, and enumerated constants, it is a very simple task to open, configure, start,
and stop the ADC controller.

9.3 Exercise 9.1: Basic ADC Control Application

This application will configure the iPac-9202 ADC controller to sample at the high sampling rate
and then sequentially sample each of analog channels in a loop. We will also flash the green
LED on and off as we iterate through the loop as a healthy status indicator.

Note: If you open the project that is supplied with the EDK, due to possible directory differences,
you will have to remove and re-add the SJJ_HardwareProvider and SJJ_ADC_Driver resources

9.3.1 Create the ADC_Test Application
1. Open Visual Studio or Visual C# Express Edition.
2. From the menu, select File→New→Project…
3. The New Project dialog appears; under Other Languages, click on the Visual C#

projects on the left side of the New Project dialog box. You should see the SJJ template
under My Templates called SJJ_MF Console Application.

4. Click on SJJ_MF Console Application.
5. In the Name: at the bottom of the New Project dialog, type in ADC_Test
6. Click OK to create the project. Open Program.cs and, again, you will see the basic

structure of the application is setup for you. You only need to add the hardware provider
for your platform and the ADC managed code driver.

7. From the menu, click on Project, and then select Add Reference… from the drop down
menu items.

8. Click on the Browse Tab, and locate the SJJ_Hardware provider.DLL.
9. Click OK.
10. From the menu, again, click on Project, and then select Add Reference… from the drop

down menu items.
11. Click on the Browse Tab, and locate the SJJ_ADC_Driver.dll.
12. Click OK.
13. Finally, from the menu, click on Project, and then select Add Reference… from the drop

down menu items. In the .NET Tab, add the Microsoft.SPOT.Hardware.SerialPort
reference.

14. Open Program.cs.
15. Add the following to the using list:

using Microsoft.SPOT.Hardware.SJJ;
using Microsoft.SPOT.Hardware.SJJ.SJJ_ADC_Driver;
using System.IO.Ports;

16. Save the project

9.3.2 Add the code to create the ADC driver object and the green LED GPIO object.

9. First, let’s create the ADC driver object and the green LED object. In public class App
before RUN() add the following:

// Create ADC driver object
SJJ_ADC_Driver myADCDriver = new SJJ_ADC_Driver();

// Create green LED object
OutputPort myGreenLED;

10. Now, let’s create the ADC driver instance and the green LED GPIO instance. In the

public void Run() method add the following:

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 143

// Open the ADC device
SerialPort myAdcHandle = myADCDriver.ADC_Open();

// Create green LED object for visual feedback and turn it off to start
myGreenLED = new OutputPort(Pins.GREEN_LED, false);

11. We need an index variable to walk us through each of the ADC channels as we go

around the loop each time, we need an integer to hold the ADC result when we read
each channel, and we need a status variable to check the result of the driver methods; so
add the following:

int iADCSourceIdx = 0;
Int16 i16ConvertSample;
SJJ_ADC_Driver.ADC_Status eStatus;

12. Before we add our work loop, let’s set the conversion rate to the high rate by setting the

low clock divisor. Add the following:

// Set ADC clock divider to /4
eStatus = myADCDriver.ADC_SetClkDiv(SJJ_ADC_Driver.ADC_ClkDiv.eADCDivide4,
myAdcHandle);
if (eStatus != SJJ_ADC_Driver.ADC_Status.eStatusWriteSuccess)
{
 Debug.Print("ADC_SetClkDiv failed: " + eStatus.ToString());
}

13. Now, we are ready to add our work loop, so add the following:

// Start ADC Testing
// Sample all analog input channels
while (true)
{
}

14. We will now add the code to manage the ADC each time we go through the loop and

sample a different analog signal channel. Each time we start through the loop we want to
turn the ADC off. Inside the while (true) loop, start by adding the following:

SJJ_ADC_Driver.ADC_Status eStatus;

// Turn off ADC
eStatus = myADCDriver.ADC_Off(myAdcHandle);
if (eStatus != SJJ_ADC_Driver.ADC_Status.eStatusWriteSuccess)
{
 Debug.Print("ADC_Off failed: " + eStatus.ToString());
}

15. To iterate our way through the ADC analog signal channels, we’ll now set up a case

statement using the iADCSourceIdx variable that we created earlier. We initialized it to
0 when we created it and we will increment it at the bottom of the work loop so we can
sample the next channel on the next iteration through the loop. When we increment the
index, we will check its value and wrap the index back to 0 when we have successfully
sampled all the input channels. Add the following case statement to the work loop:

// Set new ADC source
switch (iADCSourceIdx)
{
 case 0:
 eStatus =
myADCDriver.ADC_SetChannel(SJJ_ADC_Driver.ADC_Source.eAnalogChannel0,
myAdcHandle);
 if (eStatus != SJJ_ADC_Driver.ADC_Status.eStatusWriteSuccess)
 {

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 144

 Debug.Print("ADC_SetChannel eAnalogChannel0 failed: " +
eStatus.ToString());
 }
 break;
 case 1:
 eStatus =
myADCDriver.ADC_SetChannel(SJJ_ADC_Driver.ADC_Source.eAnalogChannel1,
myAdcHandle);
 if (eStatus != SJJ_ADC_Driver.ADC_Status.eStatusWriteSuccess)
 {
 Debug.Print("ADC_SetChannel eAnalogChannel1 failed: " +
eStatus.ToString());
 }
 break;
 case 2:
 eStatus =
myADCDriver.ADC_SetChannel(SJJ_ADC_Driver.ADC_Source.eAnalogChannel2,
myAdcHandle);
 if (eStatus != SJJ_ADC_Driver.ADC_Status.eStatusWriteSuccess)
 {
 Debug.Print("ADC_SetChannel eAnalogChannel2 failed: " +
eStatus.ToString());
 }
 break;
 case 3:
 eStatus =
myADCDriver.ADC_SetChannel(SJJ_ADC_Driver.ADC_Source.eAnalogChannel3,
myAdcHandle);
 if (eStatus != SJJ_ADC_Driver.ADC_Status.eStatusWriteSuccess)
 {
 Debug.Print("ADC_SetChannel eAnalogChannel3 failed: " +
eStatus.ToString());
 }
 break;
 case 4:
 eStatus =
myADCDriver.ADC_SetChannel(SJJ_ADC_Driver.ADC_Source.eAnalogChannel4,
myAdcHandle);
 if (eStatus != SJJ_ADC_Driver.ADC_Status.eStatusWriteSuccess)
 {
 Debug.Print("ADC_SetChannel eAnalogChannel4 failed: " +
eStatus.ToString());
 }
 break;
 default:
 eStatus =
myADCDriver.ADC_SetChannel(SJJ_ADC_Driver.ADC_Source.eBatteryVoltage,
myAdcHandle);
 if (eStatus != SJJ_ADC_Driver.ADC_Status.eStatusWriteSuccess)
 {
 Debug.Print("ADC_SetChannel eBatteryVoltage failed: " +
eStatus.ToString());
 }
 break;
}

16. Now that we have selected the analog signal channel, let’s complete the loop by turning

on the ADC, reading the channel, flashing the green LED, and incrementing the channel
selection index. Add the following to the work loop to complete the test application:

Debug.Print("Source Selected");
// Turn on ADC
eStatus = myADCDriver.ADC_On(myAdcHandle);
if (eStatus != SJJ_ADC_Driver.ADC_Status.eStatusWriteSuccess)
{
 Debug.Print("ADC_On failed");
}
// Toggle green LED on at beginning of ADC sample
if ((iADCSourceIdx % 2) == 0)
{
 // Toggle green LED on

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 145

 myGreenLED.Write(true);
}
else
{
 // Toggle green LED off
 myGreenLED.Write(false);
}

Debug.Print("ADC On");

// Read and output ADC
i16ConvertSample = (Int16)myADCDriver.ADC_Read(myAdcHandle);
if ((i16ConvertSample == SJJ_ADC_Driver.ADC_COM_ERROR) || (i16ConvertSample ==
SJJ_ADC_Driver.ADC_CONVERSION_ERROR))
{
 Debug.Print("ADC_Read failed: " + i16ConvertSample.ToString());
}
else
{
 Debug.Print("ADC Read for Ch " + iADCSourceIdx.ToString() + " = " +
i16ConvertSample.ToString());
}

// Increment and wrap index
if (++iADCSourceIdx > 5)
{
 iADCSourceIdx = 0;
}

Thread.Sleep(500);

The loop delay time is arbitrary and set relatively long to give you a chance to read the results of
each iteration through the loop in the debug pane in Visual Studio as it is happening. When you
execute the program, check that the green LED is flashing as expected, as well.

9.3.3 Configure Project Properties, Build, and Deploy the application

1. Make sure the Null modem cable is connected to the debug serial port of the iPac-9302
and the development computer.

2. With the ADC_Test project selected in the Solution Explorer, from the menu, select
Project and then select ADC_Test Properties… from the submenu.

3. The project properties page appears, click on the Micro Framework on the left tab.
4. Under Deployment, select Serial for the Transport and Com# as the Device. Where # is

the COM port number of the development computer.
5. Save the project
6. From the menu, select Build, and then select Build ADC_Test from the drop down

menu. There should be no build errors
7. Make sure the iPac-9302 is powered on. You need to wait at least 20 seconds before

deploying an application. This gives TinyBooter a chance to turn control over to the CLR.
You can also monitor the boot-up of the iPac-9302 with MFDeploy and use the clearing of
the BootLoader Flag to shorten the boot time, but remember to disconnect MFDeploy
before you attempt to deploy an application from Visual Studio.

8. From the menu, select Build, and then select Deploy ADC_Test.
The output window should show a successful download. Power down the board.

9.3.4 Running ADC_Test

The ADC_Test program can be executed and the debug output monitored with SJJ_COMM Lite
or it can be run through the Visual Studio debugger. If you run it through the debugger, check the
debug output pane in Visual Studio for the Debug.Print messages. For this test output, the ADC
inputs were alternately jumper connected to ground and +3.3V.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 146

HDR2 Pin ADC Channel Connection
1 ADC 0 GND
2 ADC 1 3.3V
3 ADC 2 GND
4 ADC 3 3.3V
5 ADC4 GND

Table 9.1 - ADC Connections for Exercise

Note: Do not connect the ADC channels to higher than 3.3 volts or the results will be invalid and
damage to the ADC might occur.

You can see the readings alternate between maximum negative value and maximum positive
value. Channel 5 is VBatt which is approximately ½ of +V. Set up SJJ_COMM Lite for the same
COM port as you configured the deployment port to be in Visual Studio, and you should see the
following displayed in the SJJ_COMM Lite output windows:

Fig 9.2 ADC_Test Output

9.4 SUMMARY: Analog-To-Digital Converter (ADC)

●
●
●

Ready.
Hello World!
Source Selected
ADC On
ADC Read for Ch 0 = -24484
Source Selected

ADC On
ADC Read for Ch 1 = 24986

Source Selected
ADC On
ADC Read for Ch 2 = -24489
Source Selected
ADC On
ADC Read for Ch 3 = 24984
Source Selected
ADC On
ADC Read for Ch 4 = -24486
Source Selected
ADC On
ADC Read for Ch 5 = 179

●
●
●

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 147

An analog-to-digital converter, or ADC, is an electronic device that is used to convert an analog
voltage signal, sampled at a particular instance, into a digital value. Analog voltage signals that
most electronic devices process are typically a voltage representation of a physical parameter
like: light, sound, pressure, temperature, etc. that are converted to a corresponding analog
voltage using a transducer.

The iPac-9302 has a single, multi-function, multi-input ADC controller which is configured as a 6-
channel general ADC. There are 5 channels available to monitor 5 independent analog signals,
each with a voltage range of from 0 Volts to + 3.3 Volts. The 6th channel is connected to battery
voltage, VBat. The digital conversions are presented as 16-bit signed integers with a range of
±25,000 counts.

The .NET Micro Framework CLR does not directly support an ADC API. To provide
programmatic access to the ADC controller, a virtual COM port interface has been implemented.
COM4 has been configured to manage the ADC controller. A managed code ADC driver that
encapsulates all the COM port manipulations and the command definitions, and provides a more
straightforward API that is more intuitive for controlling the ADC, has been provided. The
managed code driver, SJJ_ADC_Driver, is provided as a DLL that can be included as a reference
when creating your managed code application. The inner workings of the ADC driver are
discussed in Appendix B.2.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 148

10 Ethernet
Ethernet was developed in the 1970’s by Robert Metcalfe and his assistant, David Boggs, when
they were working for Xerox at the Palo Alto Research Center (PARC). Xerox was building the
first laser printer and they wanted all of the computers at PARC to be able to print with this new
printer. Robert Metcalfe was given the task to connect the then hundreds of computers at PARC
to the laser printer with a network that would be fast enough to drive the new, very fast laser
printer. In 1976 Metcalfe and Boggs published the paper: “Ethernet: Distributed Packet-Switching
For Local Computer Networks” and Ethernet was born. Ethernet originally used a shared coaxial
cable as the data transmission media and a frame-based communications scheme, carrier sense
multiple access with collision detection (CSMA/CD) provided the means for many computers,
connected to the same wire, to talk to one another. Over time, the coaxial cable was replaced
with point-to-point twisted pair connections interconnected with hubs and switches.

The Ethernet standard is now defined in the IEEE 802.3 standards and has become the most
popular network solution of choice, overtaking Token Ring and ARCNET. Network speeds range
from 10MB/s to1GB/s. The iPac-9302 provides support for a twisted pair connection running at
10/100 MB/s.

Ethernet provides the basic physical connection and address routing for the data frames. On top
of that are a number of transport and data protocols. A method for communicating data across a
packet-switched network is TCP/IP, or Transmission Control Protocol/Internet Protocol. TCP/IP
provides a packet addressing means to allow data to be reliably exchanged between two
computers. The iPac-9302 has a TCP/IP stack built into the .NET MF CLR.

10.1 Sockets

Sockets were first implemented in the Berkley version of UNIX in the late 1980’s and provide
communication channels that allow unrelated processes to exchange data across networks.
Sockets are independent of the network protocol, and may be hosted on TCP/IP network protocol
networks. The .NET MF CLR provides a native sockets implementation that provides a
standardized means for establishing a network connection and for sending and receiving data
through the sockets connection. The TCP/IP and sockets implementation can be used to host
both client and server application on the iPac-9302.

In .NET MF, the Sockets Class is used as the primary means for network communication in a
managed code application. There are three main names spaces:

• System.Net
• System.Net.Sockets
• Microsoft.SPOT.Net.NetworkInformation

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 149

Fig 10.1 Network Namespaces

Since the networking stack was introduced in .NET MF V2.5, feature support has increased to
include HTTP, HTTPs, SSL, and DPWS. Once again, the goal is to address small footprint
devices, and since the iPac-9302 is headless and support for HTTP, HTTPs, SSL, and DPWS
significantly increases the CLR’s memory footprint, these features are not currently supported in
the supplied EDK image; but they can be added upon request.

The NetworkInformation namespace provides a means to obtain network information about the
device. It is similar to using IPCONFIG.exe on the desktop. It allows you to retrieve the current
network settings, renew DHCP leases, set a specific static TCP/IP address, etc,

One tip as you are developing a new application is to output the network information via
Debug.Print statements early in the application so you know what the network parameters are,
like the IP address for example.

Just like the desktop, sockets are used for networking communications in .NET Micro Framework.
The support, like other classes, is reduced to support for small systems. The SDK comes with a
couple socket application examples.

The only protocol available is IPv4, and TCP and UDP are the protocol types available. Data is
sent and receive using byte arrays. You will have to convert the data classes of your application
to and from the byte arrays for use in send and receive operations.

HTML application pages can be accessed for parsing information. For example: an application
can read data from an HTML page, and then use the information to perform certain actions.
Another example is that an application can send static http strings so data could be read from a
browser, but full web services are not supported in the EDK.

The .NET Micro Framework implementation of sockets is limited, so look carefully at the API
reference before attempting to use code from Windows.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 150

10.1.1 Socket Setup

An application can be setup so the system acts like a client, initiating the connection, or a server,
listening for client connections. The following examples are from the two sample applications in
the SDK.

The server creates a new socket and binds the socket to the address/port of the system. The final
step is to listen on the port for incoming connections. Upon receipt of a connect request, the
server can accept the connection and perform socket.receive and socket.send operations. All
data received and sent by the server is as byte[].

Socket server = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp);
 IPEndPoint localEndPoint = new IPEndPoint(IPAddress.Any, 12000);
 server.Bind(localEndPoint);
 server.Listen(Int32.MaxValue);

The client creates a new socket and then makes a connection to an external server. The client
can perform a socket.send and socket.receive. All data is sent and received as byte[].

String Server = "www.microsoft.com";
 IPHostEntry hostEntry = Dns.GetHostEntry(server);
 Socket socket = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp);
 socket.Connect(new IPEndPoint(hostEntry.AddressList[0], port));

10.2 Exercise 10.1 Server Access – Loopback
In this exercise, the iPac-9302 is configured as a server that will listen for a connection from a
client. This is a simple example, so the server application will only support a single connection at
a time. A desktop client application has been created that will establish a Sockets connection with
the server application, send control messages to the server, and receive confirmation messages
from the server. This document is not intended to be a desktop programming primer, so the
coding details of the desktop client application will not be discussed. A description of the desktop
client will follow and full source code is provided. The coding details of the .NET MF server
application will be discussed.

10.2.1 The Desktop Client Application
The DesktopClient application is located in the ZIP file under Chapter 10. The application is a
Windows form-based application written in Visual C#. When you run the application, you will see
the following form and controls:

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 151

Fig 10.2 DesktopClient

The DesktopClient provides server controls that allow you to specify the IP address of the server,
the socket port number that you want to communicate over, a button to request the connection
and a button to close the connection. The IP address of the server can be determined in a couple
of ways and will be discussed later. The default socket port number is 12000, and that is the port
number that is coded into the server application. If you want to use a different port, you will need
to edit the server application code and recompile it; and then enter that port number in Socket
textbox of the DesktopClient.

Once the connection is made, the Green LED and PWM controls will become active. These
controls give you the capability to send control commands from the DesktopClient to the server to
control the .NET MF device. The LED button will send alternately an On or Off command to the
server. The status of the LED button will not change until the server acts on the command and
echoes the command back to the client as confirmation that the command was carried out. At
this point, the color of the LED button will change to green, if the LED was commanded On, or
back to background gray, if the LED was commanded Off.

The client application also has TrackBar controls for the PWMs. The first TrackBar controls the
frequency of PWM1, which is used as the clock frequency for PWM2, and PWM3 (Review
Section 8 Pulse Width Modulation (PWM) for PWM specifics). The client can send frequency set
commands from the minimum, 225 Hz, to 100 KHz. Setting the control to zero will turn PWM1
off. The TextBox under the TrackBar control will indicate the frequency selected, bit it will not be
updated instantly. After the server receives a PWM1 frequency set command and it performs the
operation, it echoes back the command to the client for confirmation. When the client receives
the echoed message, it will update the TextBox with the frequency set. The PWM2 and PWM3
TrackBar controls and associated TextBoxes work similarly, except they send commands to set
the duty cycle of PWM2 and PWM3 respectively to a range of 0% to 100%. The TextBoxes are
updated with the duty cycle set upon receipt of the echoed command.

On the bottom of the form is a multi-line status text box. This TextBox will display information
about the connection, commands being send, echoed confirmation messages being received,
and any error messages that might occur. When the application first launches, the status
TextBox prompts you to enter the IP address of the server.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 152

10.2.2 Socket Server Application
The Socket Server application is the companion application that is designed specifically to run
with the Desktop Client application above. The source code to the server application is part of
the examples zip file under the chapter 10 folder. When the Socket Server runs, it will sign-on
through the debug port and identify itself and output the iPac-9302’s IP address and the socket
port number that it is listen on. The IP address that the Socket Server reports should be entered
in the Desktop Client’s IP address TextBox. The default port number, 12000, is the same for both
applications, and does not need to be changed unless there is a conflict with some other
application. To change the socket port, you need to modify the iPort constant in the App class,
which will be described below, and rebuild the server application.

After the Socket Server signs on, it listens for a Sockets connection. When it gets a connection
request, it will establish the connection and accept data commands sent over the socket
connection. The Socket Server will parse the commands, determine what action is being
requested, take the appropriate action, and finally, echo back the command as a means to
confirm that the command was received and carried out.

Note: If you open the project that is supplied with the EDK, due to possible directory differences,
you will have to remove and re-add the SJJ_HardwareProvider and SJJ_PWM_Driver resources.

10.2.3 Create the Socket Server Application
1. Open Visual Studio or Visual C# Express Edition.
2. From the menu, select File->New->Project…
3. The New Project dialog appears; in Project types: expand Other Languages and

under Visual C# in the Templates: section under My Templates, you should see the
SJJ_MF Console Application.

4. Click on the SJJ_MF Console Application.
5. Make sure Create directory for solution is checked, and under name enter

MF_SocketServer.
6. Click on OK to create the new project.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 153

Fig 10.3 Creating Socket Server Project Using SJJ Visual Studio Template

7. When you open Program.cs you will see the basic references included with the

template as with earlier examples. For network and socket services, we will have to
add some additional references.

8. From the menu, select Project->Add Reference…; in the .NET tab, click on
Microsoft.SPOT.Net, and then click OK.

9. From the menu, select Project->Add Reference…; in the .NET tab, click on
System, and then click OK.

10. Again from the menu, select Project->Add Reference…; select the Browse tab and
locate and select SJJ_HardwareProvider.dll; click OK.

11. Since we will be controlling the PWM’s, add the PWM managed code driver. From
the menu, select Project->Add Reference…; select the Browse tab and locate and
select SJJ_PWM_Driver.dll; click OK.

12. Finally, from the menu, select Project->Add Reference…; in the .NET tab, click on
Microsoft.SPOT.Hardware.SerialPort; click OK.

13. Open Program.cs and add the following using directives to provide direct access to
the required API’s namespaces:

using Microsoft.SPOT.Hardware.SJJ;
using Microsoft.SPOT.Hardware.SJJ.SJJ_PWM_Driver;
using Microsoft.SPOT.Net;
using Microsoft.SPOT.Net.NetworkInformation;
using System.Net;
using System.Net.Sockets;
using Socket = System.Net.Sockets.Socket;
using System.Text;
using System.IO.Ports;

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 154

14. Save the project

10.2.4 Adding the Socket Server Code
Now that we have the basic application shell set up, we need to add the code to sign-on and
output the IP address and socket port number, listen for connections, establish a socket
connection, and receive and send data.

First, let’s establish a string constant for the version number and include that in the assembly
information, so that the application version can be examined from the file properties.

1. Open Program.cs and in the Program class add the following constant definition:

public const string c_VersionNumber = "4.0.1.3";

2. Open AssemblyInfo.cs and modify the Assembly Version and File version directives

as follows:

[assembly: AssemblyVersion(SJJ_MF_Console_Application.Program.c_VersionNumber)]
[assembly: AssemblyFileVersion(SJJ_MF_Console_Application.Program.c_VersionNumber)]

3. Save AssemblyInfo.cs
4. In Program.cs, modify the Debug.Print in Main as follows:

// Sign on
Debug.Print("MF Socket Server V" + c_VersionNumber);

App myApp = new App();

// rerun server if it exits
while (true)
{
 myApp.Run();

 Debug.Print("Restarting Server");
}

The remainder of the sign-on and functional server code will be provided in the App class, so let’s
add the class members and constants that will be required.

5. In Program.cs add the following members and constants to the App class:

const Int32 iPort = 12000;
const int c_WaitInfinite = -1;
const int c_FiveSeconds = 5000000;
const int iReceiveBufferSize = 256;
const uint c_MinPWM1 = 225; //Hz
const uint c_uiConvertError = 999999999;
const uint c_uiMaxPWMFreq = 100000; //100 KHz
const int c_iInitDutyCycle = 50; // Initialize duty cycles to 50%
bool bRunServer = true;
int iBytesReceived = 0;
int iBytesSent = 0;
SJJ_PWM_Driver.PWM_Status eStatusPWM;

// Message constants
const string sMsgLEDOn = "LED ON";
const string sMsgLEDOff = "LED OFF";
const string sMsgHdrPWM1 = "PWM1";
const string sMsgHdrPWM2 = "PWM2";
const string sMsgHdrPWM3 = "PWM3";
const string sMsgClose = "Close";

// Control objects
// PWM driver object
SJJ_PWM_Driver myPWMDriver;
bool bPWMState;

// green LED object
OutputPort myGreenLED;

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 155

// Virtual serial port handle for PWM access
SerialPort myPwmHandle;

Socket server;

We are going to be controlling the green LED and the 3 PWMs, so let’s do the initialization of the
hardware objects in the App class constructor, since it only needs to be done once at the very
beginning.

6. In Program.cs in the App class add the following constructor:

public App()
{
 // Create green LED GPIO and PWM objects for control accrss
 myGreenLED = new OutputPort(Pins.GREEN_LED, false);

 // Initialize PWM's and start with them off
 InitPWM(false);

 // Create a socket, bind it to the server's port and listen for client
connections
 server = new Socket(AddressFamily.InterNetwork, SocketType.Stream,
ProtocolType.Tcp);
 IPEndPoint localEndPoint = new IPEndPoint(IPAddress.Any, iPort);

 server.Bind(localEndPoint);
 server.Listen(Int32.MaxValue);
}

7. Then add the following PWM initialization method to the App class (this method is

called in the constructor and allows you to initialize the PWMs and turn them on or
off):

public void InitPWM(bool bPWMOnOff)
{
 // Create PWM object
 myPWMDriver = new SJJ_PWM_Driver();

 // Open the PWM device
 myPwmHandle = myPWMDriver.PWM_Open();

 // Turn PWM1 off
 eStatusPWM = myPWMDriver.PWM_Off(myPwmHandle);
 if (eStatusPWM != SJJ_PWM_Driver.PWM_Status.eStatusWriteSuccess)
 {
 Debug.Print("PWM_Off failed: " + eStatusPWM.ToString());
 }

 // Set PWM1 frequency to maximum for this application
 eStatusPWM = myPWMDriver.PWM_SetFreq(c_uiMaxPWMFreq, myPwmHandle);
 if (eStatusPWM != SJJ_PWM_Driver.PWM_Status.eStatusWriteSuccess)
 {
 Debug.Print("PWM_SetFreq failed: " + eStatusPWM.ToString());
 }

 // Set PWM1 duty cycle to 50%
 eStatusPWM = myPWMDriver.PWM_SetDutyCycle(SJJ_PWM_Driver.PWM_Channel.ePWM1,
c_iInitDutyCycle, myPwmHandle);
 if (eStatusPWM != SJJ_PWM_Driver.PWM_Status.eStatusWriteSuccess)
 {
 Debug.Print("PWM_SetDutyCycle ePWM1 failed: " + eStatusPWM.ToString());
 }

 // Set CPLD PWM2 duty cycle to 50%
 eStatusPWM =
myPWMDriver.PWM_SetDutyCycle(SJJ_PWM_Driver.PWM_Channel.ePWM2_CPLD,
c_iInitDutyCycle, myPwmHandle);
 if (eStatusPWM != SJJ_PWM_Driver.PWM_Status.eStatusWriteSuccess)

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 156

 {
 Debug.Print("PWM_SetDutyCycle ePWM2_CPLD failed: " +
eStatusPWM.ToString());
 }

 // Set CPLD PWM3 duty cycle to 50%
 eStatusPWM =
myPWMDriver.PWM_SetDutyCycle(SJJ_PWM_Driver.PWM_Channel.ePWM3_CPLD,
c_iInitDutyCycle, myPwmHandle);
 if (eStatusPWM != SJJ_PWM_Driver.PWM_Status.eStatusWriteSuccess)
 {
 Debug.Print("PWM_SetDutyCycle ePWM3_CPLD failed: " +
eStatusPWM.ToString());
 }

 // Turn on/off PWM
 if (bPWMOnOff)
 {
 eStatusPWM = myPWMDriver.PWM_On(myPwmHandle);
 if (eStatusPWM != SJJ_PWM_Driver.PWM_Status.eStatusWriteSuccess)
 {
 Debug.Print("PWM_On failed: " + eStatusPWM.ToString());
 }
 }
 else
 {
 eStatusPWM = myPWMDriver.PWM_Off(myPwmHandle);
 if (eStatusPWM != SJJ_PWM_Driver.PWM_Status.eStatusWriteSuccess)
 {
 Debug.Print("PWM_On failed: " + eStatusPWM.ToString());
 }
 }
}

Now, let’s complete the sign-on, we have to output the socket port number, determine what IP
address we have been assigned, and output the IP address.

8. In the Run method add the following sign-on code:

// Report IP Address
NetworkInterface[] mynetwork = NetworkInterface.GetAllNetworkInterfaces();

foreach (NetworkInterface mynetworkInterface in mynetwork)
{
 Debug.Print("Local IP: " + mynetworkInterface.IPAddress);
 Debug.Print("Local MAC: " +
ConvertByteToHexString(mynetworkInterface.PhysicalAddress[0]) + " " +
ConvertByteToHexString(mynetworkInterface.PhysicalAddress[1]) + " " +
ConvertByteToHexString(mynetworkInterface.PhysicalAddress[2]) + " " +
ConvertByteToHexString(mynetworkInterface.PhysicalAddress[3]) + " " +
ConvertByteToHexString(mynetworkInterface.PhysicalAddress[4]) + " " +
ConvertByteToHexString(mynetworkInterface.PhysicalAddress[5]));
}
Debug.Print("Port: " + iPort.ToString());

Now, let’s add the meat, the functional code for the server application. Because there are a
number of reasons that the socket connection could fail, we want the server code to fail gracefully
if an error occurs and be able to restart and try, again. Socket failures will throw exceptions, so
we will use the try-catch-finally exception handling convention of C# and .NET.

9. In the Run method, add the try block that polls for connection (if no error occurs, it will
wait forever):

try
{
 // Infinite wait for a connection before exiting and failing
 bRunServer = server.Poll(c_WaitInfinite, SelectMode.SelectRead);

 if (bRunServer)
 {

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 157

 Debug.Print("Connection received");
 }
}

10. In the Run method, follow the try block with the catch block to handle any exceptions

that might occur due to link failure:

catch (Exception e)
{
 Debug.Print("Socket Exception: " + e.ToString());

 bRunServer = false;
}

11. Now for the meat. In the Run method following the try-catch blocks add the finally

block that contains the socket message reads and writes and all the command
processing:

finally
{
 // Wait for a client to connect
 Socket clientSocket = server.Accept();

 // 'using' ensures that the socket gets closed
 using (clientSocket)
 {

 while (bRunServer)
 {
 { //Begin scope of receive buffer
 byte[] bReceiveBuffer = new byte[iReceiveBufferSize];

 // Check for received data
 if (clientSocket.Poll(c_FiveSeconds, SelectMode.SelectRead))
 {
 if (clientSocket.Available == 0)
 {
 // We waited 5 seconds and no bytes are ready to read,
 iBytesReceived = 0;
 }
 else
 {

 iBytesReceived = clientSocket.Receive(bReceiveBuffer,
clientSocket.Available, SocketFlags.None);

 Debug.Print("Bytes received = " +
iBytesReceived.ToString());

 // check for socket error
 if (iBytesReceived < 0)
 {
 bRunServer = false;
 }
 }
 }
 else
 {
 iBytesReceived = 0;
 }

 // loopback received data
 if (iBytesReceived > 0)
 {
 // Parse the command received
 // Convert byte message to string for parsing
 string sMsgReceived = new
string(UTF8Encoding.UTF8.GetChars(bReceiveBuffer));

 Debug.Print("Message received: " + sMsgReceived);

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 158

 // Find substrings
 string[] sMsgSubs = sMsgReceived.Split(null);

 if (string.Equals(sMsgReceived, sMsgLEDOn))
 {
 // Turn on green LED
 myGreenLED.Write(true);
 }
 else if (string.Equals(sMsgReceived, sMsgLEDOff))
 {
 // Turn off green LED
 myGreenLED.Write(false);
 }
 else if (string.Equals(sMsgSubs[0], sMsgHdrPWM1))
 {
 // PWM1 command
 uint uiSetFreq = ConvertToUint(sMsgSubs[1]);

 if (uiSetFreq != c_uiConvertError)
 {
 // check for freq == 0 and turn it off
 if (uiSetFreq == 0)
 {
 // Turn off PWM1
 eStatusPWM = myPWMDriver.PWM_Off(myPwmHandle);
 if (eStatusPWM !=
SJJ_PWM_Driver.PWM_Status.eStatusWriteSuccess)
 {
 Debug.Print("PWM_Off failed: " +
eStatusPWM.ToString());
 }
 else
 {
 bPWMState = false;
 }
 }
 else if (0 < uiSetFreq && uiSetFreq <= c_MinPWM1)
 {
 // check for 0 < freq <= c_MinPWM1 and set freq ==
c_MinPWM1 & turn on
 eStatusPWM = myPWMDriver.PWM_SetFreq(c_MinPWM1,
myPwmHandle);
 if (eStatusPWM !=
SJJ_PWM_Driver.PWM_Status.eStatusWriteSuccess)
 {
 Debug.Print("PWM_SetFreq failed: " +
eStatusPWM.ToString());
 }
 else if (!bPWMState)
 {
 // Turn on PWM
 eStatusPWM = myPWMDriver.PWM_On(myPwmHandle);
 if (eStatusPWM !=
SJJ_PWM_Driver.PWM_Status.eStatusWriteSuccess)
 {
 Debug.Print("PWM_On failed: " +
eStatusPWM.ToString());
 }
 else
 {
 bPWMState = true;
 }
 }
 }
 else
 {
 // else set freq == command freq and turn on
 eStatusPWM = myPWMDriver.PWM_SetFreq(uiSetFreq,
myPwmHandle);
 if (eStatusPWM !=
SJJ_PWM_Driver.PWM_Status.eStatusWriteSuccess)
 {

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 159

 Debug.Print("PWM_SetFreq failed: " +
eStatusPWM.ToString());
 }
 else if (!bPWMState)
 {
 // Turn on PWM
 eStatusPWM = myPWMDriver.PWM_On(myPwmHandle);
 if (eStatusPWM !=
SJJ_PWM_Driver.PWM_Status.eStatusWriteSuccess)
 {
 Debug.Print("PWM_On failed: " +
eStatusPWM.ToString());
 }
 else
 {
 bPWMState = true;
 }
 }
 }

 // Reset duty cycle to 50%
 eStatusPWM =
myPWMDriver.PWM_SetDutyCycle(SJJ_PWM_Driver.PWM_Channel.ePWM1, 50, myPwmHandle);
 if (eStatusPWM !=
SJJ_PWM_Driver.PWM_Status.eStatusWriteSuccess)
 {
 Debug.Print("PWM_SetDutyCycle ePWM1 failed: " +
eStatusPWM.ToString());
 }
 }
 else
 {
 Debug.Print("Frequency string conversion error");
 }
 }
 else if (string.Equals(sMsgSubs[0], sMsgHdrPWM2))
 {
 // PWM2 command
 uint uiSetDutyCycle = ConvertToUint(sMsgSubs[1]);

 if (uiSetDutyCycle != c_uiConvertError)
 {
 eStatusPWM =
myPWMDriver.PWM_SetDutyCycle(SJJ_PWM_Driver.PWM_Channel.ePWM2_CPLD,
(int)uiSetDutyCycle, myPwmHandle);
 if (eStatusPWM !=
SJJ_PWM_Driver.PWM_Status.eStatusWriteSuccess)
 {
 Debug.Print("PWM_SetDutyCycle ePWM2_CPLD failed: "
+ eStatusPWM.ToString());
 }
 }
 else
 {
 Debug.Print("Duty Cycle string conversion error");
 }
 }
 else if (string.Equals(sMsgSubs[0], sMsgHdrPWM3))
 {
 // PWMe command
 uint uiSetDutyCycle = ConvertToUint(sMsgSubs[1]);

 if (uiSetDutyCycle != c_uiConvertError)
 {
 eStatusPWM =
myPWMDriver.PWM_SetDutyCycle(SJJ_PWM_Driver.PWM_Channel.ePWM3_CPLD,
(int)uiSetDutyCycle, myPwmHandle);
 if (eStatusPWM !=
SJJ_PWM_Driver.PWM_Status.eStatusWriteSuccess)
 {
 Debug.Print("PWM_SetDutyCycle ePWM3_CPLD failed: "
+ eStatusPWM.ToString());
 }

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 160

 }
 else
 {
 Debug.Print("Duty Cycle string conversion error");
 }
 }
 else if (string.Equals(sMsgReceived, sMsgClose))
 {
 // Socket close
 bRunServer = false;
 }
 else
 {
 // Unknown command
 Debug.Print("Unknown command: " + sMsgReceived);
 }

 // Echo back command for confirmation
 if (iBytesReceived > 0)
 {
 iBytesSent = clientSocket.Send(bReceiveBuffer,
iBytesReceived, SocketFlags.None);

 //check for socket error
 if (iBytesSent < 0)
 {
 bRunServer = false;
 }

 }
 }
 } //End scope of receive buffer
 }

 }

 Debug.Print("Server Exiting");
}

public uint ConvertToUint(string sDecimalString)
{
 uint uiReturnVal = c_uiConvertError;
 uint uiConvertVal = 0;

 // Convert string to byte array
 byte[] byDecimalArray = Encoding.UTF8.GetBytes(sDecimalString);

 // Note byte ordering for decimal strings converted to byte arrays.
 uint uiPwrTen = 1;
 int idx;
 for (idx = (byDecimalArray.Length - 1); idx >= 0; idx--)
 {
 if ((byDecimalArray[idx] >= 0x30) && (byDecimalArray[idx] <= 0x39))
 {
 uiConvertVal += (uint) (byDecimalArray[idx] & 0x0F) * uiPwrTen;
 uiPwrTen *= 10;
 }
 else
 {
 // non-decimal character in string
 break;
 }

 }

 //Check for error
 if (idx < 0)
 {
 //Conversion success
 uiReturnVal = uiConvertVal;
 }

 return (uiReturnVal);

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 161

}

public string ConvertByteToHexString(byte bByte)
{
 byte[] bHexBytes = new byte[2];

 bHexBytes[0] = (byte) (bByte >> 4);
 bHexBytes[1] = (byte) (bByte & 0x0f);

 for (int i = 0; i < 2; i++)
 {
 if (bHexBytes[i] < 0xa)
 {
 bHexBytes[i] |= 0x30;
 }
 else
 {
 bHexBytes[i] = (byte) ((bHexBytes[i] - 9) | 0x40);
 }
 }
 string sReturnString = new string(UTF8Encoding.UTF8.GetChars(bHexBytes));

 return (sReturnString);
}

public void InitPWM(bool bPWMOnOff)
{
 // Create PWM object
 myPWMDriver = new SJJ_PWM_Driver();

 // Open the PWM device
 myPwmHandle = myPWMDriver.PWM_Open();

 // Turn PWM1 off
 eStatusPWM = myPWMDriver.PWM_Off(myPwmHandle);
 if (eStatusPWM != SJJ_PWM_Driver.PWM_Status.eStatusWriteSuccess)
 {
 Debug.Print("PWM_Off failed: " + eStatusPWM.ToString());
 }

 // Set PWM1 frequency to maximum for this application
 eStatusPWM = myPWMDriver.PWM_SetFreq(c_uiMaxPWMFreq, myPwmHandle);
 if (eStatusPWM != SJJ_PWM_Driver.PWM_Status.eStatusWriteSuccess)
 {
 Debug.Print("PWM_SetFreq failed: " + eStatusPWM.ToString());
 }

 // Set PWM1 duty cycle to 50%
 eStatusPWM = myPWMDriver.PWM_SetDutyCycle(SJJ_PWM_Driver.PWM_Channel.ePWM1,
c_iInitDutyCycle, myPwmHandle);
 if (eStatusPWM != SJJ_PWM_Driver.PWM_Status.eStatusWriteSuccess)
 {
 Debug.Print("PWM_SetDutyCycle ePWM1 failed: " + eStatusPWM.ToString());
 }

 // Set CPLD PWM2 duty cycle to 50%
 eStatusPWM =
myPWMDriver.PWM_SetDutyCycle(SJJ_PWM_Driver.PWM_Channel.ePWM2_CPLD,
c_iInitDutyCycle, myPwmHandle);
 if (eStatusPWM != SJJ_PWM_Driver.PWM_Status.eStatusWriteSuccess)
 {
 Debug.Print("PWM_SetDutyCycle ePWM2_CPLD failed: " +
eStatusPWM.ToString());
 }

 // Set CPLD PWM3 duty cycle to 50%
 eStatusPWM =
myPWMDriver.PWM_SetDutyCycle(SJJ_PWM_Driver.PWM_Channel.ePWM3_CPLD,
c_iInitDutyCycle, myPwmHandle);
 if (eStatusPWM != SJJ_PWM_Driver.PWM_Status.eStatusWriteSuccess)
 {
 Debug.Print("PWM_SetDutyCycle ePWM3_CPLD failed: " +
eStatusPWM.ToString());

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 162

 }

 // Turn on/off PWM
 if (bPWMOnOff)
 {
 eStatusPWM = myPWMDriver.PWM_On(myPwmHandle);
 if (eStatusPWM != SJJ_PWM_Driver.PWM_Status.eStatusWriteSuccess)
 {
 Debug.Print("PWM_On failed: " + eStatusPWM.ToString());
 }
 }
 else
 {
 eStatusPWM = myPWMDriver.PWM_Off(myPwmHandle);
 if (eStatusPWM != SJJ_PWM_Driver.PWM_Status.eStatusWriteSuccess)
 {
 Debug.Print("PWM_On failed: " + eStatusPWM.ToString());
 }
 }
}

10.2.5 Configure Project Properties, Build, and Deploy the application

1. Make sure the Null modem cable is connected to the debug serial port of the iPac-9302
and the development computer.

2. With the MF_SocketServer project selected in the Solution Explorer, from the menu,
select Project and then select MF_SocketServer Properties… from the submenu.

3. The project properties page appears, click on the Micro Framework on the left tab.
4. Under Deployment, select Serial for the Transport and Com# as the Device. Where # is

the COM port number of the development computer.
5. Save the project
6. With the Solution ‘MF_SocketServer’ selected in the Solution Explorer, from the menu,

select Project and then select Properties from the submenu.
7. The Solution Property Pages appears. Expand Configuration Properties on the left and

select Configuration. Make sure that the Build and Deploy checkboxes are checked in
the Project contexts. Click OK.

8. Save the solution.
9. From the menu, select Build, and then select Build Solution from the drop down menu.

There should be no build errors.
10. Make sure the iPac-9302 is powered on. You need to wait at least 20 seconds before

deploying an application. This gives TinyBooter a chance to turn control over to the CLR.
You can also monitor the boot-up of the iPac-9302 with MFDeploy and use the clearing of
the BootLoader Flag to shorten the boot time, but remember to disconnect MFDeploy
before you attempt to deploy an application from Visual Studio.

11. From the menu, select Build, and then select Deploy Solution.

The output window should show a successful download.

10.2.6 Running MF_SocketServer

Make sure that the debug COM port of the iPac-9302 is connected to the development
workstation. Launch a serial terminal program (you can use SJJ COM) and connect to the COM
port that the iPac-9302 is connected to. Configure the COM parameters to be 115200 baud, 8
data bits, no parity, and 1 stop bit. Repower the iPac-9302 and after the MF_SocketServer boots
up and acquires an IP address you should see output on the terminal program similar to Fig 10.4

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 163

Fig 10.4 MF_SocketServer Boot-Up Debug Output

Note the 4 lines after “Ready”. The Socket Server signs on with its name and version, it identifies
the IP address and MAC that it has acquired, and finally it shows the port number it is listening
on. Launch the Desktop Client and enter the IP address into the IP Address TextBox. Confirm
that the Socket number shown in the Desktop Client Socket TextBox is the same as what was
output by the Socket Server.

When the IP Address and Socket numbers are set to match between the Desktop Client and
Socket Server, click the Connect button on the Desktop Client. When the connection is
processed the Desktop Client will report it in the status TextBox and the Socket Server will also
report it via the debug port, see Fig 10.5 and Fig 10.6.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 164

Fig 10.5 Socket Server Connection Received

Fig 10.6 Desktop Client Connected

At this point we have initialize the board on boot-up to have the green LED off, the PWM1
frequency set to the maximum for this exercise, 100 KHz, the PWM1 duty cycle set to 50%, and
the PWM1 off. PWM2 and PWM3 are initialized to a duty cycle of 50% each, but because PWM1
is off, which is the reference clock for PWM2 and PWM3 then they are off as well. After the
connection is established, the Desktop Client should look like Fig 10.6:

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 165

Note: As the Desktop Client polls for messages from the Socket Server, it will report “No bytes
received from the server” each time the poll period expires and nothing is received from the
server.

Let’s start by switching the green LED. Remember we have implemented a complete
client/server command scheme with command confirmation, so when we click the LED button the
command will be sent out, but the state of the LED as reported by the Desktop Client will not
change until it receives confirmation from the server. Therefore, click the LED button and you will
see the command that is being sent as a Sockets message displayed in the Status Text box, see
Fig 10.7:

Fig 10.7 LED Button Clicked; LED ON Command Sent

When the Socket Server receives, parses, and acts on the command, it will turn the green LED
on and then echo back the command message as confirmation. When the Desktop Client
receives the echoed command and parses it, it will change the color of the LED button from the
background gray to green and it will display the echoed message, see Fig 10.8:

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 166

Fig 10.8 LED ON Command Confirmation Received

Note: In the Status TextBox you will see Received[n][m]: <echoed command>. The numbers in
the square brackets are for diagnostic purposes. If there were errors, it is possible that a
message with non-printable characters might be received; therefore, the number ‘n’ is the number
of bytes that were received when the message was received and the number ‘m’ is the number of
characters in the string that was displayed after the byte array message was converted to a string
class object. If the ‘n’ does not equal ‘m’ or if they are different from the number of characters
you see displayed in the Status TextBox, then this would indicate a possible error.

If you click the LED button, again, the LED OFF command will be sent, the LED will be turned off
by the Socket Server, and on receipt of the echoed command, the color of the LED button would
revert to gray.

Now, let’s exercise the PWM TrackBar controls and observe the reaction. For the illustrations in
this manual we have connected an oscilloscope to the 3 PWM outputs, so we can show the
correlation between the control settings and the PWM outputs. PWM1 output will be displayed on
oscilloscope channel 1 and can be sampled on pin 29 of HDR3. PWM2 output will be displayed
on oscilloscope channel 2 and can be sampled on pin 15 of HDR2. Finally, PWM3 output will be
displayed on oscilloscope channel 3 and can be sampled on pin 16 of HDR2.

We initialized the PWM’s to be off, and since we have not gotten any PWM confirmation
messages from the Socket Server, all 3 PWM TextBoxes are blank. We will start with PWM1
frequency, so we can turn the whole PWM system on. If you click on the slider of the PWM1
TrackBar, the frequency value that the control is selecting will be sent when the mouse is
released (you can click, hold and move the slider back and forth and no commands will be sent
until the mouse button is released). You can simply click the slider where it is without moving it,
and that will send its current value. As a first test, let’s do that. Click the PWM1 control and you
will observe by the status message that the PWM1 command is being sent. See Fig 10.9

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 167

Fig 10.9 PWM1 TrackBar Slider Clicked

As with all the controls, the TextBox will not be updated until the Socket Server sets the new
PWM1 frequency and echoes back the command for confirmation. When the confirmation is
received, you will see the TextBox updated as in Fig 10.10.

Fig 10.10 PWM1 Frequency Command Confirmed

The command requested a frequency of 10.390 KHz be set for PWM1. Checking the PWM
outputs on the oscilloscope shows PWM1 actual frequency is measured as 10.37 KHz, well within
the accuracy limit of the iPac-9302 hardware and the accuracy of the oscilloscope measurement.
The Socket Server always sets the PWM1 to a duty cycle of 50%, see Fig 10.11

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 168

Fig 10.11 PWM1 Frequency Measurement

We know that when we turn on PWM1 we also turn on PWM2 and PWM3 and their frequencies
will be the PWM1 frequency divided by 256. If we contract the time base of the oscilloscope, we
can view the PWM2 & 3 outputs. Fig 10.12 Shows both PWM2 and PWM3 to be running at 40.65
Hz, which is within the accuracy range for the expected 40.51 Hz expected.

Fig 10.12 PWM2 and PWM3

Note: When PWM1 was turned on, the Socket Server did not inform the Desktop Client of the
PWM2 or PWM3 duty cycles, so those TextBoxes are still blank. This is a simple exercise, so we
will leave that for an exercise for you to do if you want to experiment with enhancing the code.

Let’s now test the duty cycle controls. Click on and drag the slider for the PWM2 duty cycle and
drag it to the left, reducing the duty cycle. As with the PWM1 control, first you will see the
indication of the command being sent in the Status TextBox, see Fig 10.13

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 169

Fig 10.13 PWM2 Send Duty Cycle Change Command

Then when the confirmation is received, the PWM2 TextBox will be updated to show, in this case,
18% and the echoed command will be displayed in the Status TextBox, see Fig 10.14

Fig 10.14 PWM2 Duty Cycle Change Confirmed

Let’s examine the outputs, and we will see that PWM2 has, indeed, changed and the duty cycle
has been reduced. The full time between pulses is measured to be 24.6 mSec on the
oscilloscope, see Fig 10.15

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 170

Fig 10.15 PWM2 Pulse Period

The on-time of each pulse is measured to be 4.4 mSec on the oscilloscope, see Fig 10.16

Fig 10.16 PWM2 Pulse On-Time

These measurements yield a duty cycle of 17.9%, agreeing within accuracy limits with the control
setting on the Desktop Client.

Let’s do the same thing with PWM3 only increase its duty cycle. Click on and drag the slider for
the PWM3 duty cycle and drag it to the right, increasing the duty cycle. As with the PWM2
control, first you will see the indication of the command being sent in the Status TextBox, see Fig
10.17

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 171

Fig 10.17 PWM3 Send Duty Cycle Change Command

Then when the confirmation is received, the PWM3 TextBox will be updated to show, in this case,
87% and the echoed command will be displayed in the Status TextBox, see Fig 10.18

Fig 10.18 PWM3 Duty Cycle Change Confirmed

Let’s examine the outputs, again, and we will see that PWM3 has, indeed, changed and the duty
cycle has been increased. The full time between pulses is measured to be, again, 24.6 mSec on
the oscilloscope, see Fig 10.19

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 172

Fig 10.19 PWM3 Pulse Period

The on-time of each pulse is measured to be 21.2 mSec on the oscilloscope, see Fig 10.20

Fig 10.20 PWM3 Pulse On-Time

These measurements yield a duty cycle of 86.2%, agreeing with accuracy limits with the control
setting on the Desktop Client.

10.3 SUMMARY: Ethernet, TCP/IP, and Sockets

The iPac-9302 is equipped with an Ethernet controller and the .NET Micro Framework CLR
provides a TCP/IP stack and subset of Socket services that allow .NET MF devices to be
interconnected over an Ethernet network. Full bidirectional messaging is supported which allows
for a variety of client and server scenarios to be implemented.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 173

11 Other Topics and Ideas
In every book or guide, we have written there always winds up to be a chapter of miscellaneous
topics to discuss. With a multipurpose platform, this could be a long chapter, but we will limit
ourselves to just a few ideas.

11.1 Exercise 11.1: GPIO Block Access Library
The iPac-9302 comes with multiple GPIO ports. The CPLD offers 2 sets of 8 GPIO outputs and 8
GPIO inputs. The EP9302 has several GPIO ports available. Let’s say you have a device that has
an I/O port of individual signals; for example, an ADC0804 A/D converter chip with 8 output lines.
Connecting the output port to iPac-9302 GPIOs is an obvious choice. Programmatically setting up
individual GPIOs would be a bit messy. Like the SPI LCD Driver, we can create a managed class
driver that handles groups of GPIOs, where we can just send or receive and integer value.

In the Chapter 8 folder, there is a Block_GPIO_Driver project, which groups the CPLD GPIOs into
PW_Input, PX_Output, PY_Output, and PZ_Input methods.

1. Open Visual Studio or Visual C# Express Edition.
2. Open the Block_GPIO_Driver project
3. There are 4 regions that have a block of code for each of the CPLD ports. Regions help

specify a block of code that can be collapsed in the editor. This feature helps with
grouping like items together and hiding code. If it is not already expanded, expand the
PW_GPIO.

InputPort PW0 = new InputPort(Pins.GPIO_PORT_W_0, false, ResistorMode.Disabled);
InputPort PW1 = new InputPort(Pins.GPIO_PORT_W_1, false, ResistorMode.Disabled);
InputPort PW2 = new InputPort(Pins.GPIO_PORT_W_2, false, ResistorMode.Disabled);
InputPort PW3 = new InputPort(Pins.GPIO_PORT_W_3, false, ResistorMode.Disabled);
InputPort PW4 = new InputPort(Pins.GPIO_PORT_W_4, false, ResistorMode.Disabled);
InputPort PW5 = new InputPort(Pins.GPIO_PORT_W_5, false, ResistorMode.Disabled);
InputPort PW6 = new InputPort(Pins.GPIO_PORT_W_6, false, ResistorMode.Disabled);
InputPort PW7 = new InputPort(Pins.GPIO_PORT_W_7, false, ResistorMode.Disabled);

public int PW_Input()
{

int PW = 0;

if (PW0.Read())
{

PW |= 1;
}
if (PW1.Read())
{

PW |= 2;
}
if (PW2.Read())
{

PW |= 4;
}
if (PW3.Read())
{

PW |= 8;
}
if (PW4.Read())
{

PW |= 0x10;
}
if (PW5.Read())
{

PW |= 0x20;
}

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 174

if (PW6.Read())
{

 PW |= 0x40;
}
if (PW7.Read())
{

PW |= 0x80;
}

return PW;

}

The first thing is to instantiate the individual PW GPIO pins. The PW_Input method returns an
integer based on the values found on each of the GPIO pins. The GPIO pins are considered to be
in the order of PW0 as the least significant bit (LSB) and PW7 as the most significant bit (MSB).
Each of the GPIO pins is read to see if there is a 1 or 0 on the pin. If there is a 1, then ‘or’ in the
logic 1 into the bit location of the PW value.

4. Expand the PY_GPIO Region.

OutputPort PY0 = new OutputPort(Pins.GPIO_PORT_Y_0, false);
OutputPort PY1 = new OutputPort(Pins.GPIO_PORT_Y_1, false);
OutputPort PY2 = new OutputPort(Pins.GPIO_PORT_Y_2, false);
OutputPort PY3 = new OutputPort(Pins.GPIO_PORT_Y_3, false);
OutputPort PY4 = new OutputPort(Pins.GPIO_PORT_Y_4, false);
OutputPort PY5 = new OutputPort(Pins.GPIO_PORT_Y_5, false);
OutputPort PY6 = new OutputPort(Pins.GPIO_PORT_Y_6, false);
OutputPort PY7 = new OutputPort(Pins.GPIO_PORT_Y_7, false);

public void PY_Output(int PY)
{

 if ((PY & 1) > 0)
{

PY0.Write(true);
}
else
{

PY0.Write(false);
}

if (((PY >> 1) & 1) > 0)
{

PY1.Write(true);
}
else
{

PY1.Write(false);
}

if (((PY >> 2) & 1) > 0)
{

PY2.Write(true);
}
else
{

PY2.Write(false);
}

if (((PY >> 3) & 1) > 0)
{

PY3.Write(true);
}
else
{

PY3.Write(false);
}

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 175

if (((PY >> 4) & 1) > 0)
{

PY4.Write(true);
}
else
{

PY4.Write(false);
}

if (((PY >> 5) & 1) > 0)
{

PY5.Write(true);
}
else
{

PY5.Write(false);
}

if (((PY >> 6) & 1) > 0)
{

PY6.Write(true);
}
else
{

PY6.Write(false);
}

if (((PY >> 7) & 1) > 0)
{

PY7.Write(true);
}
else
{

PY7.Write(false);
}

}

Like the input pins of PW, the output pins of PY are defined. Here is the thing to watch out for:
notice that we defined all the output pins to be initialized as false. The initial state of the pin may
affect any devices attached to the pin. Architecture was stressed in the previous chapter, and
care should be taken to understand what the state of each GPIO needs to be at startup. This is
why we listed the boot state of each pin in Chapter 5 General Purpose Input/Output Pins.

The PY_Output method takes the integer value passed in and tests the individual bits through a
shift and bit-and test and sets each GPIO output pin to its corresponding bit value.

Now let’s test the driver by running the application in the iPac-9302 emulator.

5. Close the project.
6. Open the Block_Driver_Test project.
7. You may have to re-reference the SJJ Hardware Provider and the Block_GPIO_Driver

DLLs based on the location of these components in your system.

In the App class, a GPIO port is defined for input. A reference to the Block_GPIO_Driver is
defined.

InputPort EGPIO1 = new InputPort(Pins. EGPIO1_HDR3_13_CLK1_HZ, false,
ResistorMode.Disabled);
Block_GPIO_Driver myCPLD = new Block_GPIO_Driver();

The main body of the application is an infinite while-loop that checks to see if EGPIO1 is set to 1.
If it is set to 1, then the GPIO lines on PW inputs are sent out to PY outputs, and the PZ inputs
are sent to PX outputs.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 176

while (true)
{

if (EGPIO1.Read())
{

myCPLD.PY_Output(myCPLD.PW_Input());
Debug.Print("PW Input: " + myCPLD.PW_Input().ToString());

myCPLD.PX_Output(myCPLD.PZ_Input());
Debug.Print("PZ Input: " + myCPLD.PZ_Input().ToString());

}

Thread.Sleep(5000);

}

8. With the project selected in the Solution Explorer, from the menu, select Project and then
select Block_Driver_Test Properties… from the submenu.

9. The project properties page appears, click on the Micro Framework tab.
10. Under Deployment, select Emulator for the Transport and iPac-9302 Emulator as the

Device.
11. Save the project
12. From the menu, select Build, and then select Build Block_Driver_Test from the drop

down menu.
13. From the menu, select Build, and then select Deploy Block_Driver_Test.
14. Click on F5, or from the Debug menu, click Start Debugging.
15. Once the emulator starts, click on a few of the PW and PZ check boxes, and then click on

the EGPIO1 check box. You will have to wait a few seconds, and the corresponding PY
and PX outputs pins should changes, as well as, the Debug output for each of the PW
and PZ values.

16. Uncheck EGPIO1, and make other changes to the PW and PZ input pins, and then click
on EGPIO1 again. The outputs should change.

If we didn’t have the Block_GPIO_Driver, the coding for this application would be lengthy. With
the Block_GPIO_Driver, the application itself is easier to write and manage, plus the driver can be
re-used for other applications and can be re-coded to support the CPU GPIO ports as well. The
two things to keep in mind are the initial configuration of the GPIO pins when it comes to initial
state for output pins and glitch filtering for input pins, and that the output GPIO pins are not a true
parallel port and all pins do not switch states simultaneously nor are they sampled
simultaneously. It is important, when designing your system, to make sure that the port that you
are reading, will be stabile and unchanging during the read period. When writing a port, you want
to be sure that the hardware does not sample the output until all bits have been written. You
might want to use addition GPIOs as semaphores.

11.2 Some Programming Tips

Showing you what to do is important, but showing what not to do is equally important and can
save you time from coding something the wrong way. Here are few tips to be aware of as you use
.NET MF:

11.2.1 Application End Loop
While-loops have been used to keep the application running. You can have an application just
end, but that will stop the system. The system would have to be restarted to rerun the application.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 177

If you want to wait on interrupts, an alternative is needed. There are two. First you can use the
while (true) loop to make an infinite loop:

while (true)
{

// Do some stuff
}

The second solution is to use the thread sleep forever:

Thread.sleep(-1);

11.2.2 To Debug.Print or Not to Debug.Print; That is the Question

Debug.Print sends data and debug information out the debug serial port. Since the iPac-9302
uses the debug serial port to download new applications into flash, it is not always a good idea to
add a lot of Debug.Print statements in periodic loops. When Visual Studio connects with the iPac-
9302 to deploy an application, the .NET MF will stop the current application and communicate
with Visual Studio to download and flash the new application; but if the application has the COM
port very busy with debug output, Visual Studio cannot connect with the .NET MF and cannot
stop the application, so the deploy operation will ultimately fail. For example if the GreenLED
project were to be modified to the following:

while (true)
{

Thread.Sleep(500);
myGreenLED.Write(true);
Debug.Print("Hello");

Thread.Sleep(500);
myGreenLED.Write(false);
Debug.Print("World");

}

Since the while-loop is an infinite loop at the end of the application, the Debug.Print would
probably collide with any attempts to download to the device. If you have no choice and need to
have a lot of debug output, recognize that this will cause a problem with the download and
deploy, so you will have to use MFDeploy to erase the application section in flash before
downloading a new application.

11.2.3 Interrupt Service Routine Mistakes
We want to keep the tasks in the ISR very short. Adding long Thread.sleeps or Debug.Print would
NOT be good programming practice:

Bad Example 1:

void EGPIO_OnInterrupt(Cpu.Pin port, bool state, TimeSpan time)
{
 Debug.Print("Interrupt hit");
 myGreenLED.Write(true);
 myPY7.Write(false); // Go low for the next interrupt

}

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 178

Bad Example 2:
void EGPIO_OnInterrupt(Cpu.Pin port, bool state, TimeSpan time)
{
 Thread.Sleep(200);
 myGreenLED.Write(true);
 myPY7.Write(false); // Go low for the next interrupt

}

11.2.4 Clean Instantiation

When creating an instance of the hardware object, we sometimes separated the definition from
the instantiation:

OutputPort myGreenLED;
public void RUN()
{

myGreenLED = new OutputPort(Pins.GREEN_LED, false);
.
.
.

A cleaner solution that aids in code being more self-documenting is to do the following:

OutputPort myGreenLED = new OutputPort(Pins.GREEN_LED, false);
public void RUN()
{

.

.

.

11.3 Summary - Reusable Code Delivered
As we opened in Chapter 1, we said that reusable code was one of the many goals in modern
programming. .NET allows you to re-use pre-defined and custom made objects in your
application. If we didn’t have the SPI LCD driver or the Block GPIO driver, the application code
using these objects would be considerably larger and more complicated.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 179

A C# Primer

Like any programming language, C# supports the usual operators, program flow commands,
arrays, value types, and error handling. The information supplied here is a brief overview for
reference. You can find more information about C# programming in many of the books that are
listed in the Bibliography or online at http://msdn2.microsoft.com/en-
us/library/aa287558(VS.71).aspx.

A.1 C# Operators

C# provides a large set of operators. The operators are symbols that specify which operation to
perform in an expression such arithmetic, logical, shift, conditional, etc. C# has the usual
arithmetic, increment/decrement, shift, and logical operators, as well as, as a variety of others
shown in the following table. In addition, many operators can be overloaded by the user, thus
changing their meaning when applied to a user defined type.

Operator Category Operators Comments
Arithmetic + - * / % Basic arithmetic, but order of

operation must be observed.

% - gets there remainder

Arithmetic overflow can result
in an overflow exception.

Logical (boolean and bitwise) & | ^ ! ~ && || true
false

Boolean test logic and
enumerated types

String concatenation + Merge strings together.
Increment, decrement ++ --
Shift << >> Shift but doesn’t change

original variable
Relational == != < > <= >= Test conditions
Assignment = += -= *= /= %= &=

|= ^= <<= >>=

Member access . Namespace
Indexing [] For Arrays, multidimensional

arrays not supported.
Cast () Conversion from one value

type to another
Conditional ? : If (condition) then A else B

X = Y = 0 ? 12 : 6

If Y is 0, then X= 12
If Y is not 0 then X = 6

Delegate concatenation and
removal

+ -

Object creation new
Type information as is sizeof typeof
Overflow exception control checked unchecked
Indirection and Address * -> [] &

Table A 1 - C# Operators

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 180

A.2 Value Types
C# supports the following value types:

Value Type Description
Bool Boolean value – either true or false
Byte 8-bit unsigned integer ranging from 0 to 255
Char Unicode 16-bit character
Decimal 128-bit data type, range ±1.0 × 10−28 to ±7.9 × 1028
Double 64-bit floating-point values, ranging ±5.0 × 10−324 to ±1.7 × 10308
Float 32-bit floating-point values, ranging ±1.5 × 10−45 to ±3.4 × 1038
Int Signed 32-bit integer, range -2,147,483,648 to 2,147,483,647
Long Signed 64-bit integer, range –9,223,372,036,854,775,808 to

9,223,372,036,854,775,807
Sbyte Signed 8-bit integer, range -128 to 127
Short Signed 16-bit integer, range -32,768 to 32,767
Struct Encapsulate a group of variables
Unit Unsigned 32-bit integer, range 0 to 4,294,967,295
Ulong Unsigned 64-bit integer, range 0 to 18,446,744,073,709,551,615
ushort Unsigned 16-bit integer, range 0 to 65,535

Table A 2 - C# Types

A.3 Loops

Loops or iteration statements allow code to be executed several times. C# supports the following:

A.3.1 Do - While
The do-while statement executes a group of statements enclosed in {} repeatedly until a specified
expression evaluates to false. The statement or block of statements will execute at least one time
before the expression is tested.

public static void Main()
{

int x = 0;

do
{

Debug.Print("This is loop : " + x.ToString());
x++;

} while (x < 100);
}

A.3.2 While
The while-loop executes a group of statements enclosed in {} until a specified expression
evaluates to false. The difference between the do-while loop and the while loop is that, the test
expression is evaluated at the beginning of the loop for the while loop but it is evaluated at the
end of the loop for the do-while loop.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 181

public static void Main()
{

int x = 0;

while (x < 100)
{

Debug.Print("This is loop : " + x.ToString());
x++;

}
}

A.3.3 For
The for-loop executes a group of statements enclosed in {} repeatedly until a specified expression
evaluates to false. The for-loop provides a mechanism for initializing variables before the loop is
begun and a mechanism for modifying variables on each pass through the loop. This is handy for
iterating over arrays and for sequential processing, and can also act as a delay.

public static void Main()
{

for (int y = 0; y < 100; y++)
{

Debug.Print("This is loop : " + y.ToString());
}

}

A.3.4 Foreach, in
The foreach,in statement looks through a collection to get specific information. It is not used for
changing the contents in the collection.

public static void Main()
{

int[] z = new int[] { 1, 4, 7, 12, 5 };
foreach (int i in z)
{

Debug.Print("This is value : " + i.ToString());
}

}

A.4 Program flow / Conditional Branching
Here are the program flow, otherwise known as conditional branching or selection statements that
are available in C#:

A.4.1 If-else
The if-statement tests an expression for a Boolean result. If true the next statement in {} will be
executed. The else is optional, and will be executed if the condition is false

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 182

public static void Main()
{

if (w == 0)
{

Debug.Print("W is zero");
}
else
{

Debug.Print("W is not zero");
}

}

A.4.2 Switch-Case
The switch statement is a control statement that evaluates a variable, in the switch statement,
against a number of possible values, in the following case statements, and executes a specific
block of code depending on the matching value. It also provides for a default block of code that
can be executed if none of the cases are satisfied.

Example 1:

public static void Main()
{

int x = 0;

switch (x)
{

case 1:
{

Debug.Print("X is 1 ");
Break;

}
case 2:
{

Debug.Print("X is 2 ");
Break;

}
default:
{

Debug.Print("X is not 1 or 2");
}

}
}

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 183

Example 2:

public static void Main()
{

String Test = "";
switch(Test)
{

case 'A':
{

Debug.Print("Test is A ");
break

}
case 'B':
{

Debug.Print("Test is B ");
Break;

}
default:
{

Test = "C";
}

}

}

A.4.3 Goto
Before the advent of more structured programming languages, the only way to transfer execution
control from one location in a program to another location based on runtime conditions was to use
a goto statement. The goto statement transfers the program control directly to a labeled
statement. There have been many a spirited discussion over the use of goto statements or the
banning if them altogether. Statements have been made that claim that the number of bugs in a
program are directly proportional the number of goto’s in the program code. Nearly any
programming structure that you might construct using goto statements can be alternately
constructed using while, for, or do loops. There are, however, times when a goto is the most
economic way to get the job done. We strongly recommend that you avoid using goto in your
code, but if you feel you must, take a moment and write some meaningful comments with the
goto to remind yourself later, when you are scratching your head in a debug session, just what
you thought you were trying to accomplish by that goto statement.

public static void Main()
{

if (x == 0)
{

x++;
// Jumping to A because x is 0
goto A;

}
else
{

// Jumping to B because x is NOT 0
goto B;

}

A:
Debug.Print("The value is " + x.ToString());

B:
Debug.Print("x is not zero");

}

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 184

A.4.4 Return
Return is used to send a value result back to an initiator for assignment. Here is a typical
example:

public static void Main()
{

String myResult = "";
myResult = theTest(true);

}

public static string theTest(bool Test)
{

if (Test)
{

return "The test was true";
}
else
{

return "The test was false";
}

}

Although programmatically there is nothing wrong with the example above, having multiple return
points can get confusing as the complexity of a method or sub-function increases. It is better
programming practice to have a single point of return, if at all possible. It keeps you from
returning uninitialized values and makes debugging much easier. A better structure for the same
example would be:

public static void Main()
{

String myResult = "";
myResult = theTest(true);

}

public static string theTest(bool Test)
{

// Return variable initialized with failure condition on entry
String sReturnString = "The test was false";

if (Test)
{

sReturnString = "The test was true";
}

// Single point of return
return sReturnString;

}

A.5 Arrays
An array is a data structure (variable) that contains a number of variables of the same type.
Arrays are declared with a type:

type[] arrayName;

Multidimensional arrays are not supported in .NET Micro Framework.

Create an integer array with no initialized values:

int[] x = new int[10];

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 185

Create an integer array with each element initialized to specific value:
int[] y = new int[] { 0, 1, 4, 5, 6, 7 };
int[] z = { 4, 7, 14, 13, 67 };

Notice that we had to specify the size of the array when we were not initializing the
array elements; but when we provided initializers we did not have to specify the size.
The compiler determines the size from the number of initializers in this case.

Create a string array:

string[] myString = new string[4];
string[] mystring = new string[] { "Test", "this", "array" };

Notice that this is an array of strings, and not a string represented by an array of characters.

C# also supports Arraylist, which provides better flexibility than the typical array. With Arraylists,
you can add data, remove data, shuffle data, insert elements into an Arralylist, and you can get a
count of the number of elements in the array.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 186

B Virtual COM Ports

Virtual COM ports are used as a mechanism to provide driver access to hardware that is not
directly supported by the CLR HAL/PAL API’s. From the point of view of creating SerialPort
objects and reading and writing data, programmatically they look identical to real COM ports. The
differences are in the way data is managed so that the hardware that is associated with each
virtual COM port can be properly configured and controlled.

When opening a virtual COM port, you specify a configuration that includes a baud rate. Baud
rate really has no meaning for the ADC and PWM virtual COM ports, because in the iPac-9302,
data is handled as parallel bytes and is never serialized. The choice of baud rate will not affect
the transfer speed of either driver. One can choose any of the supported baud rates, and the
virtual COM port will always run at its maximum speed. Similarly, flow control has no meaning,
as well, and should be turned off.

The COM port interface in general has no clue about the particulars of the hardware device it is
connected to. It knows how to send a byte-stream out and read a byte-stream in. Each virtual
COM port driver has to add a command and control protocol on top of the byte-stream transport.
The command and control protocol is a very simple structure that packetizes commands and data
in a format that can be translated to appropriate register writes and reads of the target hardware
device. The basic architecture of each command frame is show in Table B 1

Virtual COM Port Command Frame Architecture
Byte 0 Byte 1 Byte 2 Byte 3 Byte 4…n

ASCII SOF Command Code Device Number # of Data Bytes Data Bytes

Table B 1 - Virtual COM Port Command Frame Architecture

Each frame starts with an ASCII Start-Of-Frame (SOC) byte (0x02) followed by a command code.
Next is a device number, which for the current implementation can only be 0, but was included to
support possible future hardware expansion. Next is the number of bytes that accompany the
particular command. Some command codes require no data bytes, so this would be 0 and no
bytes would follow. Some command codes require data to be sent, so the number of data bytes
would be >0 and that would be the number of data bytes to follow and complete the frame. If the
data that is being transported is of a data type that is more that 1 byte in size, the data is
arranged in the frame as high-byte to low-byte order. This data exchange is all managed at a
local level in the iPac-9302, so no frame check bytes are required. This keeps the data exchange
lean and mean.

Command synchronization is important, so one of the commands supported is a synch command.
If the software determines that it has gotten out of synch with the virtual COM port driver, it can
issue a synch command and restart the command sequence.

This type of an interface is a little complex and not as intuitive as it would be if a direct API for the
hardware device had been provided. This is where the strength of the managed code comes to
our rescue, and we can wrap the complexities of the virtual COM interface in a managed code
driver that provides a simple and intuitive API set for the software developer. Managed code
drivers have been written for both of the virtual COM port devices. The fundamentals of the ADC
and PWM virtual COM port drivers are described below:

B.1 SJJ_PWM_Driver Details

The following is a more in-depth description of the inner workings of the PWM managed code
driver. As described earlier, this driver encapsulates the virtual COM port interface for the PWM
controllers and provides a simpler and more intuitive API for the programmer.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 187

If you review the source code for the PWM managed code driver, SJJ_PWM_Driver, you will see
that it encapsulates the command definitions, status definitions, and byte arrays that are the
frames required to write and read the registers of the PWM devices through the data transport of
the virtual COM port. It also encapsulates the calculations that are required to determine some of
the configuration register values, so that the software developer can concentrate on the
frequency of the PWM output and the duty cycle as a percentage and not have to know how to
convert those numbers into the appropriate PWM register values nor does the software developer
need to know much about the hardware configuration, itself.

For those who may not want to use the managed code driver, let’s look at one of the API methods
to see how one goes about using the virtual COM port directly. A good example is the
PWM_SetFreq() method:

public PWM_Status PWM_SetFreq(UInt32 uiPWMFreq, SerialPort myPwm)
{
 PWM_Status eReturnVal = PWM_Status.eStatusPWMComHandleError;
 UInt32 uiPWMxTermCnt;

 // Calculate terminal count
 uiPWMxTermCnt = (PWM_CLOCK_FREQ / uiPWMFreq) - 1;

 // Check that terminal count (and target frequency) is in range
 if (uiPWMxTermCnt <= PWM_MAX_TERMINAL_COUNT)
 {
 // Set terminal count in command string
 bSetFreq[bSetFreq.Length - 1] = (byte)(uiPWMxTermCnt &
0x000000FF);
 bSetFreq[bSetFreq.Length - 2] = (byte)((uiPWMxTermCnt >> 8) &
0x000000FF);

 // Write terminal count command to PWM virutal port
 if (myPwm != null)
 {
 byte[] bReadBuf = new byte[1];
 myPwm.Write(bSetFreq, 0, bSetFreq.Length);

 // Read and return status
 myPwm.Write(bSetStatusRead, 0, bSetStatusRead.Length);
 myPwm.Read(bReadBuf, 0, 1, 1);

 eReturnVal = (PWM_Status)bReadBuf[0];
 }
 }

 return (eReturnVal);
}

This method accepts the desired frequency, in Hz, and the SerialPort object that was returned by
a previous call to the PWM_Open() method. If you look at the Cirrus EP9302 hardware
reference, you will see that one needs to calculate the correct Terminal Count Register value and
write it to that register. In the code above, you can see the calculation and then it is checked to
be sure that the frequency that was requested was in a range that the PWM could actually
provide. A check is made of the resultant Terminal Count Register value to be sure it does not
exceed its range.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 188

If the calculated register value is in range, it must be packaged in an appropriate command frame
so that the virtual COM driver will write the new value to the Terminal Count Register. The virtual
COM port driver has a command for writing the Terminal Count Register. In the managed code
driver, that command is defined as eWriteTermCnt in the PWM_Command enumerated type.
Also in the managed code driver, a byte array has been defined that has all the frame bytes to
send this command to the virtual COM port driver with the data bytes for the Terminal Count
Register value set to 0:

protected byte[] bSetFreq = new byte[] { (byte)PWM_Command.eSTX,
(byte)PWM_Command.eWriteTermCnt, 0, 2, 0x00, 0x00 };

The Terminal Count Register is a 16-bit register, so 2 data bytes are required. Going back to this
method, the high byte and low byte of the calculated Terminal Count Register are written to the
bSetFreq array’s last two bytes by shifting and masking the uiPWMxTermCnt variable. Pay
attention to the byte ordering when storing multi-byte variables. The bytes are written in highest
byte to lowest byte order in the array.

With the register bytes written to the command frame array, it is ready to be sent through the
virtual COM port driver. A sanity check it made to make sure that the SerialPort object is valid,
and then the myPwm.Write operation is made with the bSetFreq command frame. The virtual
COM port driver will parse the frame, recognize the command, pick off the register bytes,
reconstruct a 16-bit integer with the data bytes, and write the new Terminal Count value to the
Terminal Count Register.

To provide status, the virtual COM port driver registers a current driver status which can be read
back with the eSetReadReg command, also found in the PWM_Command enumerated type. The
data in the command tells the driver what to read back, so a single data byte of eReadStatus
found in the PWM_Read enumerated type is included. The managed code driver has a frame
already defined for that purpose:

protected byte[] bSetStatusRead = new byte[] { (byte)PWM_Command.eSTX,
(byte)PWM_Command.eSetReadReg, 0, 1, (byte)PWM_Read.eReadStatus };

Once this command is issued, the virtual COM port driver parses the frame, gets the current
status, and puts it in the virtual COM port’s read buffer. An immediate read operation,
myPwm.Read, will return the status information that is then returned by the method.

If you review the other methods and definitions, you will get a clear idea of how the virtual COM
port driver works for the PWM’s and get an appreciation for how the managed code driver
simplifies the interface.

B.2 SJJ_ADC_Driver Details

The following is a more in-depth description of the inner workings of the ADC managed code
driver. As described earlier, this driver encapsulates the virtual COM port interface for the ADC
controller and provides a simpler and more intuitive API for the programmer.

If you review the source code for the ADC managed code driver, SJJ_ADC_Driver, you will see
that, as with the PWM managed code driver, it encapsulates the command definitions, status
definitions, and byte arrays that are the frames required to write and read the registers of the
ADC device. The virtual COM port driver for the ADC insulates the software developer from the
specifics of the bit-fields in the ADC command registers, so even at this level, the software
developer does not need to know the specific architecture of the ADC command and control
registers.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 189

For those who may not want to use the managed code driver, review the PWM managed code
driver above, as both have the same command structure. Virtually all the configuration of the
ADC is done through individual commands of the virtual COM port driver. These commands are
defined in the ADC_Command enumerated type in the managed code driver.

Once the ADC is configured, an analog signal source selected, and the ADC turned on, sampling
the selected source is similar to the reading back of the status. Let’s look at the ADC_Read
method:

public int ADC_Read(SerialPort myAdc)
{
 int iReturnVal = ADC_COM_ERROR;

 if (myAdc != null)
 {
 byte[] bReadBuf = new byte[2];

 myAdc.Write(bSampleADC, 0, bSampleADC.Length);
 myAdc.Read(bReadBuf, 0, bReadBuf.Length, 1);

 // Convert bytes to 16-bit integer
 iReturnVal = (int)bReadBuf[1];
 iReturnVal = (int)(iReturnVal << 8);
 iReturnVal |= (int)bReadBuf[0];
 }

 return (iReturnVal);
}

You will see that it takes the SerialPort object from the previous open operation as the only
parameter. It is assumed that the ADC is configured, an analog channel selected, and the ADC
has been turned on. The read method does a sanity check on the SerialPort object, and if valid, it
writes a read request command frame in the form a defined byte array:

protected byte[] bSampleADC = new byte[] { (byte)ADC_Command.eSTX,
(byte)ADC_Command.eSampleADC, 0, 0 };

This command is parsed by the ADC virtual COM port driver and the ADC is sampled and the
results are placed in the virtual COM port’s read buffer. This command is immediately followed
by a read command, myAdc.Read, which returns the ADC value. The ADC return value is a 16-
bit integer, so the read buffer is defined to be 2 bytes long, and then to return the 16-bit, signed
integer, the returned bytes need to be shifted and OR’d into the return variable to be returned by
the method. Note, again, the high-byte/low-byte ordering in the returned value.

Since we are returning the ADC result, either of the error conditions, ADC conversion error
(returned by the virtual COM port driver) or NULL COM port handle, are indicated by returning
predefined constants that are out of the valid ADC value range. These error return values are
defined in the managed code driver as:

public const int ADC_CONVERSION_ERROR = 0x7000; // Out of range value
to indicate conversion failure
public const int ADC_COM_ERROR = 0x7700; // Null COM port handle
public const int ADC_NEG_RANGE = 0x9E58; // ADC count range is +/-
25,000 counts
public const int ADC_POS_RANGE = 0x61A8;

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 190

If you review the other methods and definitions, you will get a clear idea of how the virtual COM
port driver works for the ADC device and get an appreciation for how the managed code driver
simplifies the interface.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 191

C Parts List, Suppliers, etc.
There are several extra parts that are used in the exercise that are not part of the EDK kit. Here is
a list of parts and possible suppliers. You may find alternative sources in your local area or on the
Internet.

C.1 Parts List

Part Description Supplier
NE555N 555 Timer Jameco: 890091 / Digikey 296-1411-5-ND
ADC0804LCN A/D Convert Jameco: 10153 / Digikey ADC0804LCN-ND
Standoffs 13/16 inches (20.6 mm) Radio Shack: 276-195
Bread Board Bread Board Jameco: 20601, 20758 / Digikey 438-1045-

ND, 438-1046-ND
Jumper Wire Jumper wire various lengths Jameco: 19290, 20080 / Digikey 923351-

ND
TIL311 HEX Display Jameco: 32951
4-DIP switch 4-DIP switch Jameco: 617908
Connection Wire .025" square socket to .025

square socket
E-Z-Hook: 910-12-S

LCD2S-162 with 2x 16 (2
line x16 Character)

SPI LCD Microconrollershop.com – LCD2S-162

4x4 keypad Keypad to interface to SPI
controller

Microconrollershop.com – HC-KP

Resistors: 1K, 10K 1K
resistor pack

1K, 10K, and 1K resistor pack

Capacitors: 10uF, 0.1uF,
150pF

10uF, 0.1uF, 150pF

LEDs 2 –LEDs

DC power Supply 0 to 15V, 0
to 3A or equivalent.

Optional external power supply

Table C 1 - Exercise Parts List

C.2 Suppliers

The following are the supplier websites:

Company Website
SJJ Embedded Micro Solutions www.sjjmicro.com
Digi-Key www.digikey.com
Radio Shack www.radioshack.com
Jameco Electronics www.jameco.com
E-Z-Hook www.e-z-hook.com
Microcontrollershop.com www.microcontrollershop.com

Table C 2 - Suppliers List

C.3 Schematic Capture
All the schematics in this guide were developed using Design Works Pro. The schematic and part
library files are part of the EDK1.ZIP file. For more information about Design Works Pro and
Design Works Lite, please visit Capilano Computing: http://www.capilano.com/.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 192

C.4 Internet Resources

• .Net MF News Group: microsoft.public.dotnet.framework.microframework
• .NET MF website: http://msdn2.microsoft.com/en-us/embedded/bb267253.aspx

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 193

D iPac-9302 I/O Header Information
The iPac-9302 User Guide and the information listed in the GPIO section of this guide, detail the
different GPIO ports available. This chapter is provided as a reference listing the pin header
number and respective signals. The iPac-9302 has a arrow (►) pointing to Pin1 on the PCB
mask.

D.1 Header 1 – HDR1

Pin Signal Pin Signal
1 PY7 (Output) 2 GND
3 PY6 (Output) 4 GND
5 PY5 (Output) 6 GND
7 PY4 (Output) 8 GND
9 PY3 (Output) 10 GND
11 PY2 (Output) 12 GND
13 PY1 (Output) 14 GND
15 PY0 (Output) 16 GND
17 PX7 (High Drive Output) 18 GND
19 PX6 (High Drive Output) 20 GND
21 PX5 (High Drive Output) 22 GND
23 PX4 (High Drive Output) 24 GND
25 PX3 (High Drive Output) 26 GND
27 PX2 (High Drive Output) 28 GND
29 PX1 (High Drive Output) 30 GND
31 PX0 (High Drive Output) 32 GND
33 PZ7 (Input) 34 GND
35 PZ6 (Input) 36 GND
37 PZ5 (Input) 38 GND
39 PZ4 (Input) 40 GND
41 PZ3 (Input) 42 GND
43 PZ2 (Input) 44 GND
45 PZ1 (Input) 46 GND
47 PZ0 (Input) 48 GND
49 (see JB1 options) 50 GND

Table D.1 – PLD-Based Digital I/O Connector (HDR1)

D.2 Header 2 – HDR2

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 194

Pin Signal Pin Signal
1 ADC0 2 ADC1
3 ADC2 4 ADC3
5 ADC4 6 GND
7 GND 8 GND
9 INTR1 10 INTR3
11 PLDIO_00 12 PLDIO_01
13 PLDIO_02 14 PLDIO_03
15 PLD_PWM2 16 PLD_PWM3
17 GND 18 GND
19 EGPIO[13]/I2S-SDI2 20 EGPIO[14]/PWM1
21 GND 22 GND
23 SCLK1 24 SFRM1
25 SSPTX1 26 SSPRX1
27 GND 28 GND
29 ABTCK 30 ASYNC
31 ASDO 32 ASDI
33 ARSTN 34 EPGIO[4]/I2S-SDO1
35 EPGIO[5]/I2S-SDI1 36 EPGIO[6]/I2S-SDO2
37 GND 38 GND
39 5 Volts 40 3.3 Volts

Table D.2 - Analog (HDR2)

D.3 Header 3 – HDR3

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 195

Pin Signal Pin Signal
1 HGPIO[2] 2 GND
3 HGPIO[3] 4 GND
5 HGPIO[4] 6 GND
7 HGPIO[5] 8 GND
9 FGPIO[1] 10 GND
11 CGPIO[0] 12 GND
13 EGPIO[1]/CLK_1HZ 14 GND
15 EGPIO[2] 16 GND
17 EGPIO[3]/HDLCLK1 18 GND
19 EGPIO[6]/I2S-SDO2 20 GND
21 EGPIO[10]DREQ1 22 GND
23 EGPIO[11]/DACK1 24 GND
25 EGPIO[12]/DEOT1 26 GND
27 EGPIO[13]/I2S-SDI2 28 GND
29 EGPIO[14]PWM1 30 GND
31 EGPIO[15]DASP 32 GND
33 PW0 (Input) 34 GND
35 PW1 (Input) 36 GND
37 PW2 (Input) 38 GND
39 PW3 (Input) 40 GND
41 PW4 (Input) 42 GND
43 PW5 (Input) 44 GND
45 PW6 (Input) 46 GND
47 PW7 (Input) 48 GND
49 3.3/5V (JB3) 50 GND

Table D.3 – Processor-Based Digital I/O Connector (HDR3)

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 196

E Extended Weak References

Extended Weak References was a stop gap solution for data storage for the early versions of
.NET MF. The concept was interesting, but concern that the garbage collector could destroy data
at any time is unacceptable to an embedded system. For completeness, we have moved the
information about EWR to this appendix. The new FAT file system and SD card will be discussed
in the future.

E.1 Memory Management (Garbage Collection) and Weak References
With a PC, you have different storage solutions available – CD-ROM, hard drive, floppy disk, USB
flash key, compact flash card, SD card, etc. Although the iPac-9302 has a SD card slot, .NET MF
didn’t originally have support for it or even a file system available to write to it. The only storage
available was the onboard flash. Without a file system, a special feature called Extended Weak
Reference (EWR) was implemented to store data. In order to understand how EWR works, we
need to understand something about the Garbage Collector (GC) and Weak References.

In C++, an object can be created and destroyed. Any object written in C++ should have a
destructor in order to free-up memory. In C#, you create an instance of an object with the new
operator, but there is no delete or destroy operator available. What frees the memory? The
answer is the garbage collection unit. The garbage collector runs in the background cleaning up
the memory heap of any unused objects. The garbage collector keeps track of the object
references and looks for objects that can no longer be used by the running code. The garbage
collector doesn’t run constantly, so it doesn’t take up valuable processor resources. The garbage
collect runs periodically, ideally when the system is idle, but it is difficult to predict when it will
actually run.

When you create an instance of an object using the new operator, this is called a strong
reference. Weak References allow you to keep objects available, and they tell the GC to take
memory if you have too. Normally, the GC cannot collect an object if it is reachable, i.e. if there is
a direct or indirect reference to it. Such references are called strong references. A weak
reference allows an object to be collected by the GC while it is still referenced. In such a case, the
reference will either return a valid object or null if the GC has collected it.

In .NET Framework, Weak References can be used for large complex objects that take time to
setup. If an application doesn’t use the object for awhile but will come back to it, to save memory
you can destroy the strong reference but keep a weak reference so you don’t have to go through
the setup again. If there is enough available storage space on the heap, the GC might not destroy
the weak reference at all. It is a bit of a gamble, so you have to test to see if the weak reference is
still alive before it can be used. Because of the small footprint, a large object in .NET MF would
be rare, so you might not need to use weak references.

Information on weak references is limited. MSDN has some coverage, but the best resource is
the book Inside C#, 2nd edition by MS Press. There is a weak reference example that
demonstrates the concept. Here is the example adapted and modified for .NET MF and our
purpose:

using System;
using Microsoft.SPOT;
using System.Threading;
using Microsoft.SPOT.Hardware;
using System.Runtime.CompilerServices;

namespace SJJ_MF_Console_Application
{
 public class Program
 {

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 197

 public static void Main()
 {

 //Create a strong refernece
 myTest test1 = new myTest();

 //Create a weak reference
 WeakReference wr = new WeakReference(test1);

 //Test the weak reference
 if (wr.IsAlive)
 {
 myTest test2 = (myTest) wr.Target;
 Debug.Print("[Test2] " + test2.myString);
 test2.SaveString("Save this info");
 test2 = null;

 }

 //Destrong the Strong Reference
 test1 = null;

 //Force GC to run
 //Debug.GC(true);

 //Test that the Strong reference is gone
 //Debug.Print(test1.myString);

 //Do other Work

 for(int x = 0; x < 100; x++)
 {
 //Short delay
 }

 if (wr.IsAlive)
 {

 myTest test3 = (myTest)wr.Target;
 Debug.Print("[Test3] " + test3.myString);
 Debug.Print("[Test3] " + test3.myString2);
 test3 = null;
 }
 else
 {
 Debug.Print("[Test3] WeakReference is Dead");
 }

 }

 }

 public class myTest
 {
 public string myString = "Testing Weak References";
 public string myString2;

 public void SaveString(string myString2Input)
 {
 myString2 = myString2Input;
 }
 }

}

Weak references can only be accessed via a static method, so we deviate from our App class.
Test1 is a strong reference to the myTest class. A weak reference “wr” is created for the instance
of Test1. The application tests that the weak reference is alive. If alive, test2 is used to create an
instance of the weak reference, performs some actions, and is then destroyed.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 198

We then destroy the strong reference Test1 (Test1 = null;). The application can then go off and
do some work, and then the weak reference is tested again. If it is still alive, Test3 becomes an
instance of the weak reference, and Test3 is able to perform some actions. The output is:

[Test2] Testing Weak References
[Test3] Testing Weak References
[Test3] Save this info

If the Debug.GC(True) line is uncommented, the output would be:

[Test2] Testing Weak References
[Test3] WeakReference is Dead

The GC destroyed the weak reference so it cannot be used again. If you were to comment out the
Test1 = null line so the strong reference is not destroyed, the weak reference would not be
destroyed.

If you were to uncomment the Debug.Print(test1.myString) when Test1 is destroyed, the
application would crash since Test1 no longer exists.

The example shows the GC in action, and a valuable concept about keeping objects alive with
the GC running in the background.

E.2 Data Storage with Extended Weak References
The previous section focuses in on an important issue of the GC. It may seem like a long way to
go to talk about data storage, but when you are working with data that is going to be stored in
flash, you need to be aware that the GC is running in the background.

ExtendedWeakReferences (EWR) are unique to .NET MF that allow you to take an object and
store it in flash. The internal flash driver is use to write the data. EWR is part of the
Microsoft.SPOT namespace.

The actual object itself must be flagged as serializable. Serialization is a process for converting
an instance of an object to a format that can be saved to a file, database, or transmitted across
the network. Web applications take advantage of serialization. In .NET MF, we want to store the
object into flash. In order to define a EWR of an object, the object itself must be serializable.

E.3 EWR Class
EWR consists of an EWR class and defined priority level enumeration. The constructor
ExtendedWeakReference initializes a new instance of EWR that will be used to reference an
object. The following are the methods available:

• RecoverOrCreate – Attempts to recover a specific EWR object, and if it is not recoverable
it will create a new instance of the class.

• Recover – The object is known to exist, so just recover the object to access the data.
• PushBackIntoRecoverList – Flags a EWF object for recovery in the event of a power

cycle.

Since the PC has been around for some time, everyone is used to seeing files with names and
files in directories. In .NET MF only one application can be running at a time, but the application

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 199

could access multiple objects stored in flash. Your application is going to be performing and
managing the file reads / writes.

The RecoverOrCreate method is used to create a new EWR object that will be stored in flash.
The input parameters are as follows:

• Selector – This is a type that is associated with the EWR you want to recover or create.
In other words think of this as your file name.

• ID – The ID of the EWR you want to recover. Another way to think about this is a page in
the file you want to recover. You can have multiple pages in a file, if you want to preserve
the data and start new, you can just set a new page number.

• Flags – If the EWR object is new, the flag defines how the data will be treated in a reboot.
There are two options – c_SurviveBoot (survive a reset of the system) and
C_SurvivePowerDown (shutdown or power down).

The Recover method only requires the Selector and ID to recover the data. In theory, you can
have one application create and write some records to flash and then download a new application
that just recovers the data.

Once you have the EWR object, you need to tell the CLR how to treat the data. This is where the
GC concepts in the last section become important. With EWR, you can tell the GC the importance
of the data. The GC will determine what data to discard based on priority going from
OkayToThrowAway up to System items. The table describes the different priority levels.

Priority Level Description
System System data that is mandatory for basic operation
Critical Critical data.
Important Data that is important, but not critical.
NiceToHave Data that is nice to have, but not critical.
OkayToThrowAway Data that can be safely thrown away.

Fig 11.1 - EWR Priority Levels

It is important to note that there is no concept of getting available storage information. As flash
fills up with data, the CLR makes a decision on what data to keep or save based on the priority
level set.

E.4 A Simple EWR Example
Okay, now let’s save some data. The SDK comes with a sample EWR application for a custom
emulator. The emulator that is part of the project has an added feature to store data in a file on a
local hard drive. The application itself can be made to run on the iPac-9302. The EWR project in
the Appendix E folder is a modified version of the SDK example. The application simply counts
the number of boots.

Since our philosophy is that the more examples available the better, for this exercise, we will
create an application from scratch. The application will still count boots, but it will also store a
string of data.

E.4.1 Create the Storage Application

1. Open Visual Studio or Visual C# Express Edition.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 200

2. Using the SJJ_MF Console Application, create a new application called Storage_EWR1.
There is no need to add the SJJ Hardware provider since GPIOs, SPI, or COM ports will
not be used.

3. In the App class, and before the Run() method, add the following:

private static ExtendedWeakReference myData;

private static class TypeAppDataFlag { }

The first line defines the ExtendedWeakReference. The second line is a class object that will be
used as our file name. When you want to access the data in the future, your application would
have to use the same class. The class is case sensitive.

4. Now let’s add what we want to actually store. After the two lines just entered add the
following:

[Serializable]
private sealed class theData
{

public Int32 BootCount;
public String theDataString;

public void newData(string theString)
{

theDataString = theString;
}

public void newBootCount(Int32 bootCount)
{

BootCount = bootCount;
}

}

The Serializable attribute is required so the data can be saved to flash. The class itself is a sealed
class, meaning that class is inheritable for use with other classes. The actual data itself is simply
two items: a 32-bit integer for holding the number of boots and a string. We can store other
information such as other strings, integer values, arraylists, etc., but we want to keep this as
simple as possible.

5. Right after our theData class, lets create a new reference to the class:

private static theData myStoredData;

6. Now we are ready to create the retrieve and save methods. Add the following:

public static void GetData()
{

myData = ExtendedWeakReference.RecoverOrCreate(typeof(TypeAppDataFlag), 0,
ExtendedWeakReference.c_SurvivePowerdown);
myData.Priority = (Int32)ExtendedWeakReference.PriorityLevel.Important;

myStoredData = myData.Target as theData;

if (myStoredData == null)
{

Debug.Print("First Boot or data was lost");
myStoredData = new theData();
myStoredData.newBootCount(0);
myStoredData.newData("New");

}

}

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 201

public static void SaveData()
{

myData.Target = myStoredData;
Thread.Sleep(4000);

}

In the GetData method, the EWR myData attempts to recover the data on the flash disk using the
TypeAppDataFlag object and index. If the information doesn’t exist, it will created it with the
attributes to survive a power cycle and the second line lets the GC know the importance of the
data.

The third line associates our data class with the EWR. The ‘as’ reference converts the data, if
any, to the defined data class myStoredData. If the data doesn’t exist, the ‘if’ condition will use the
methods to add data.

The SaveData method simply passes the object, myStoredData, to the EWR myData. This will
trigger the data to be written to flash. The Thread.sleep delays any further execution so data has
time to be written to the flash.

Notice that all of the GetData and SaveData are ‘static’. EWR can only be accessed using Static
methods. Static methods cannot access non-static methods or properties, but non-static methods
can access static methods and properties. We can use the Run method created by the template
to perform the restore and save actions.

7. Finally, lets add code to our Run method:

//Load the old data from flash
GetData();

Debug.Print("Number of boots is " + myStoredData.BootCount);
Debug.Print(myStoredData.theDataString);

//Manipulate the data
myStoredData.BootCount++;
if (myStoredData.theDataString == "String A")
{

myStoredData.newData("String B");
}
else if (myStoredData.theDataString == "String B" || myStoredData.theDataString ==
"New")
{

myStoredData.newData("String A");
}

Debug.Print("The new data to be saved:");
Debug.Print("Boot number is " + myStoredData.BootCount);
Debug.Print(myStoredData.theDataString);

//Save the updates
SaveData();
Debug.Print("Data Saved!");

The first thing is to retrieve the stored data. If the data doesn’t exist, than GetData will create the
data. The currently stored data will be sent to the debug output. The ability to manipulate and
update stored data could be important to a project, so the boot count is incremented and a new
string is stored. The udpated data is then sent to the debug output, and the data is saved to flash.
The application then exits.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 202

8. Save the project.

E.4.2 Build, Deploy, and Test

1. Make sure the Null modem cable is connected to the iPac-9302 and the development
computer.

2. With the project selected in the Solution Explorer, from the menu, select Project and then
select Storage_EWR1 Properties… from the submenu.

3. The project properties page appears, click on the Micro Framework tab.
4. Under Deployment, select Serial for the Transport and Com# as the Device. Where # is

the COM port number of the development computer.
5. Save the project
6. From the menu, select Build, and then select Build Storage_EWR1 from the drop down

menu.
7. Make sure the iPac-9302 is powered on. You need to wait at least 20 seconds before

deploying an application. This gives TinyBooter a chance to turn control over to the CLR.
You can also monitor the boot-up of the iPac-9302 with MFDeploy and use the clearing of
the BootLoader Flag to shorten the boot time, but remember to disconnect MFDeploy
before you attempt to deploy an application from Visual Studio.

8. From the menu, select Build, and then select Deploy Storage_EWR1.
9. The output window should show a successful download.
10. Launch a terminal application like SJJ_COMM to view the debug output.
11. Power-cycle the iPac-9302 and watch the output. The first time the application runs the

data doesn’t exist so the output should look like the following:

Hello World!
First Boot or data was lost
Number of boots is 0
New
The new data to be saved:
Boot number is 1
String A
Data Saved!
Done.

12. Hit the reset button, and the data gets updated:

Hello World!
Number of boots is 1
String A
The new data to be saved:
Boot number is 2
String B
Data Saved!
Done.

If you continue to hit reset, you will see the boot count increase and the string value ping-pong
between String A and String B. You can manipulate theData class to store other information. One
item that might be interesting to store is an Arraylist. You can use an Arraylist to keep a log of
records, but you need to be careful in increasing the log. The .NET MF port to the iPac-9302
supports up to 1MB of storage data. You will have to manage storage in your application and
delete old data when necessary.

SJJ Embedded Micro Solutions Version 6.0

Copyright © 2007-2010 SJJ Embedded Micro Solutions, All Rights Reserved.
01/08/10 203

F Bibliography
Various resources were used to develop this guide. There are many in-depth resources on C#
development.

F.1 Books:

C# Programmer’s Cookbook, Allen Jones, Microsoft press, 2004, ISBN: 0-7356-1930-1

CLR via C#, Jeffrey Richter, Microsoft Press, 2nd Edition, 2006, ISBN-13: 978-7356-2163-3,
ISBN-10:0-7356-2163-2

Embedded Programming with the Microsoft .NET Micro Framework, Donald Thompson and
Rob S. Miles, Microsoft Press, 2007, ISBN-13: 978-0-7356-2365-1, ISBN-10: 0-7356-2365-1

Inside C#, Tom Archer and Andrew Whitechapel, Microsoft Press, 2nd Edition, 2002, ISBN: 0-
7356-1648-5

Introducing .NET, David S. Platt, Microsoft Press, 3rd Edition, 2003, ISBN: 0-7356-1918-2.

Microsoft Visual C# .NET (Core Reference), Mickey Williams, Microsoft Press, 2002, ISBN: 0-
7356-1290-0.

Windows XP Under the Hood, Brain Knittel, QUE, 2003, ISBN: 0-7897-2733-1

Visual C# 2008 Step-by-Step, John Sharp, Microsoft Press, 2007, ISBN: 0-7356-2430-5

F.2 Conferences

Instructor-Lead Lab: ILL316 - Customizing the .NET Micro Framework Emulation System to
Simulate Real Hardware, MEDC 2007

F.3 Websites

History of SPI and the 555 Timer were found here:
http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
http://en.wikipedia.org/wiki/555_timer

History of Ethernet:
http://www.youtube.com/watch?v=g5MezxMcRmk

Tera Term Download Site:
http://logmett.com/index.php?/download/tera-term-464.html

